Iron-oxide nanoparticles target intracellular HSP90 to induce tumor radio-sensitization
Nanoparticle-based therapies have emerged as a promising approach to overcome limitations of conventional chemotherapy. Present study investigates the potential of oleic acid-functionalized iron-oxide nanoparticles (MN-OA) to enhance the radiation response of fibrosarcoma tumor and elucidates its un...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1863; no. 5; pp. 857 - 869 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nanoparticle-based therapies have emerged as a promising approach to overcome limitations of conventional chemotherapy. Present study investigates the potential of oleic acid-functionalized iron-oxide nanoparticles (MN-OA) to enhance the radiation response of fibrosarcoma tumor and elucidates its underlying mechanism.
Various cellular and molecular assays (e.g. MTT, clonogenic, cell cycle analysis, cell death, DNA damage/repair) and tumor growth kinetics were employed to investigate the mechanism of MN-OA induced radio-sensitization.
Mouse (WEHI-164) and human (HT-1080) fibrosarcoma cells treated with MN-OA and gamma-radiation (2 Gy) showed a significant decrease in the cell proliferation. Combination treatment showed significant decrease in clonogenic survival of WEHI-164 cells and was found to induce cell cycle arrest, apoptosis and mitotic catastrophe. The mechanism of radio-sensitization was found to involve binding of MN-OA with HSP90, resulting in down-regulation of its client proteins, involved in cell cycle progression (Cyclin B1 and CDC2) and DNA-double strand break repair (e.g. RAD51 and BRCA1). Consistently, longer persistence of DNA damage in cells treated with MN-OA and radiation was observed in the form of γ-H2AX foci. The efficacy and mechanism of MN-OA-induced radio-sensitization was also validated in an immuno-competent murine fibrosarcoma model.
This study reveals the key role of HSP90 in the mechanism of tumor radio-sensitization by MN-OA.
Present work provides a deeper understanding about the mechanism of MN-OA-induced tumor radiosensitization, highlighting the role of HSP90 protein. In addition to diagnostic and magnetic hyperthermia abilities, present remarkable radiosensitizing activity of MN-OA would further excite the clinicians to test its anti-cancer potential.
[Display omitted]
•MN-OA significantly improved radiosensitivity of fibrosarcoma cells and its tumor.•MN-OA enhanced radiation-induced DNA damage, mitotic catastrophe and apoptosis.•The mechanism was found to be mediated by binding of MN-OA with HSP90.•A tumor growth delay index of 2.1 was observed by MN-OA plus gamma-radiation.•HSP90 seemed to be a key target for MN-OA-mediated tumor radiosensitization. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0304-4165 1872-8006 1872-8006 |
DOI: | 10.1016/j.bbagen.2019.02.010 |