Effects of Matrix Metalloproteinase Inhibitors on Bone Resorption and Orthodontic Tooth Movement
Matrix metalloproteinases are involved in the regulation of bone remodeling. The hypothesis that matrix metalloproteinase inhibitors may be useful for experimentally limiting orthodontic tooth movement, a process involving perturbations of normal bone remodeling, was tested. General matrix metallopr...
Saved in:
Published in | Journal of dental research Vol. 82; no. 9; pp. 687 - 691 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
SAGE Publications
01.09.2003
SAGE PUBLICATIONS, INC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Matrix metalloproteinases are involved in the regulation of bone remodeling. The hypothesis that matrix metalloproteinase inhibitors may be useful for experimentally limiting orthodontic tooth movement, a process involving perturbations of normal bone remodeling, was tested. General matrix metalloproteinase inhibitors limited the resorption of bone slices by mouse marrow cultures stimulated by calcitriol, parathyroid hormone, and basic-fibroblast growth factor. Pre-coating dentin slices with short arginine-glycine aspartic acid (RGD) peptides, but not arginine-glycine-glutamic acid (RGE) controls, restored bone resorption in the presence of matrix metalloproteinase inhibitors. Orthodontic tooth movement was inhibited by local delivery of Ilomastat, a general matrix metalloproteinase inhibitor, with the use of ethylene-vinyl-acetate (ELVAX) 40, a non-biodegradable, non-inflammatory sustained-release polymer. This study shows that orthodontic tooth movement can be inhibited with the use of matrix metalloproteinase inhibitors, and suggests a mechanistic link between matrix metalloproteinase activity and the production of RGD peptides. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-0345 1544-0591 |
DOI: | 10.1177/154405910308200906 |