Thin boundary layer model underestimates greenhouse gas diffusion from inland waterways
Inland waters are significant sources of atmospheric greenhouse gas (GHG) emissions. The thin boundary layer (TBL) model is often employed as a means of estimating GHG diffusion in inland waters based on gas transfer velocity (k) at the air-water interface, with k being subject to regulation by near...
Saved in:
Published in | Environmental research Vol. 233; p. 116472 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
15.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Inland waters are significant sources of atmospheric greenhouse gas (GHG) emissions. The thin boundary layer (TBL) model is often employed as a means of estimating GHG diffusion in inland waters based on gas transfer velocity (k) at the air-water interface, with k being subject to regulation by near-surface turbulence that is primarily driven by wind speed in many cases. This wind speed-based estimation of k (wind-k), however, can introduce substantial uncertainty for turbulent waterways where wind speed does not accurately represent overall turbulence. In this study, GHG diffusion in the Beijing-Hangzhou Grand Canal (China), the first and longest man-made canal in the world, was estimated using the TBL model, revealing that this model substantially underestimated GHG diffusion when relying on wind-k. Strikingly, the carbon dioxide, methane, and nitrous oxide diffusions were respectively underestimated by 159%, 162%, and 124% when using this model. These findings are significant for developing more reliable approaches to evaluate GHG emissions from inland waterways.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0013-9351 1096-0953 1096-0953 |
DOI: | 10.1016/j.envres.2023.116472 |