Light emission from plasmonic nanostructures

The mechanism of light emission from metallic nanoparticles has been a subject of debate in recent years. Photoluminescence and electronic Raman scattering mechanisms have both been proposed to explain the observed emission from plasmonic nanostructures. Recent results from Stokes and anti-Stokes em...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 155; no. 6; pp. 060901 - 60915
Main Authors Cai, Yi-Yu, Tauzin, Lawrence J., Ostovar, Behnaz, Lee, Stephen, Link, Stephan
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 14.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mechanism of light emission from metallic nanoparticles has been a subject of debate in recent years. Photoluminescence and electronic Raman scattering mechanisms have both been proposed to explain the observed emission from plasmonic nanostructures. Recent results from Stokes and anti-Stokes emission spectroscopy of single gold nanorods using continuous wave laser excitation carried out in our laboratory are summarized here. We show that varying excitation wavelength and power change the energy distribution of hot carriers and impact the emission spectral lineshape. We then examine the role of interband and intraband transitions in the emission lineshape by varying the particle size. We establish a relationship between the single particle emission quantum yield and its corresponding plasmonic resonance quality factor, which we also tune through nanorod crystallinity. Finally, based on anti-Stokes emission, we extract electron temperatures that further suggest a hot carrier based mechanism. The central role of hot carriers in our systematic study on gold nanorods as a model system supports a Purcell effect enhanced hot carrier photoluminescence mechanism. We end with a discussion on the impact of understanding the light emission mechanism on fields utilizing hot carrier distributions, such as photocatalysis and nanothermometry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-9606
1089-7690
1089-7690
DOI:10.1063/5.0053320