A Highly Linear Integrated Temperature Sensor on a GaN Smart Power IC Platform
On a GaN smart power integrated circuit (IC) platform, a highly linear (i.e., proportional to absolute temperature) temperature sensor IC is demonstrated for building voltage references as well as temperature compensation functional blocks. The circuit is designed based on the temperature-dependent...
Saved in:
Published in | IEEE transactions on electron devices Vol. 61; no. 8; pp. 2970 - 2976 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | On a GaN smart power integrated circuit (IC) platform, a highly linear (i.e., proportional to absolute temperature) temperature sensor IC is demonstrated for building voltage references as well as temperature compensation functional blocks. The circuit is designed based on the temperature-dependent characteristics of GaN-based peripheral devices (e.g., heterojunction Schottky barrier diode, enhancement-/depletion-mode high electron mobility transistors, and lateral field-effect rectifiers) that are monolithically integrated with high-voltage power devices. This monolithic integration scheme facilitates the design efforts in taking full advantages of GaN's superior capability to operate at high temperatures. Proper circuit operation was demonstrated at 275 °C. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2014.2327386 |