The Galilean Satellites Formed Slowly from Pebbles
It is generally accepted that the four major (Galilean) satellites formed out of the gas disk that accompanied Jupiter's formation. However, understanding the specifics of the formation process is challenging, as both small particles (pebbles) and the satellites are subject to fast migration pr...
Saved in:
Published in | The Astrophysical journal Vol. 885; no. 1; pp. 79 - 97 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.11.2019
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | It is generally accepted that the four major (Galilean) satellites formed out of the gas disk that accompanied Jupiter's formation. However, understanding the specifics of the formation process is challenging, as both small particles (pebbles) and the satellites are subject to fast migration processes. Here we hypothesize a new scenario for the origin of the Galilean system, based on the capture of several planetesimal seeds and subsequent slow accretion of pebbles. To halt migration, we invoke an inner disk truncation radius, and other parameters are tuned for the model to match physical, dynamical, compositional, and structural constraints. In our scenario it is natural that Ganymede's mass is determined by pebble isolation. Our slow pebble accretion scenario then reproduces the following characteristics: (1) the mass of all the Galilean satellites; (2) the orbits of Io, Europa, and Ganymede captured in mutual 2:1 mean motion resonances; (3) the ice mass fractions of all the Galilean satellites; and (4) the unique ice-rock partially differentiated Callisto and the complete differentiation of the other satellites. Our scenario is unique to simultaneously reproduce these disparate properties. |
---|---|
Bibliography: | AAS17890 The Solar System, Exoplanets, and Astrobiology ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ab46a7 |