Piezoelectric and pyroelectric properties of conductive polyethylene oxide-lead titanate composites

Polymer-ceramic composites with pyroelectric sensitivity are presented as promising candidates for sensing applications. Selection of the appropriate ceramic filler and the polymer matrix is one of the key parameters in the development of optimized materials for specific applications. In this work l...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 24; no. 4; pp. 45020 - 7
Main Authors Khanbareh, H, Zwaag, S van der, Groen, W A
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polymer-ceramic composites with pyroelectric sensitivity are presented as promising candidates for sensing applications. Selection of the appropriate ceramic filler and the polymer matrix is one of the key parameters in the development of optimized materials for specific applications. In this work lead-titanate (PT) ceramic particulate is incorporated into a polymer matrix, polyethylene oxide (PEO) with a relatively high electrical conductivity to develop sensitive and at the same time flexible composites. PT particles are dispersed in PEO at varying volume fractions, and composite materials are cast in the form of films to measure their dielectric, piezoelectric and pyroelectric properties. From these data the piezoelectric voltage coefficients as well as pyroelctric figures of merit of the composite films have been determined. In order to determine the effect of electrical conductivity of the polymer matrix on the poling efficiency and the final properties, a poling study has been performed. Improving the electrical conductivity of the polymer phase enhances the poling process significantly. It is found that both the piezoelectric and the pyroelectric figures of merit increase with concentration of PT. PT-PEO composites show superior pyroelectric sensitivity compared to other composites with less conductive polymer matrices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0964-1726
1361-665X
DOI:10.1088/0964-1726/24/4/045020