An evolutionary shape optimization for elastic contact problems subject to multiple load cases
Most structures in the real life are subject to multiple load cases. This paper aims at extending the evolutionary structural optimization (ESO) algorithm to optimal contact shape design for elastic bodies under the multiple load cases. To evaluate the reference stresses of each contact node in a fi...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 194; no. 30; pp. 3394 - 3415 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Most structures in the real life are subject to multiple load cases. This paper aims at extending the evolutionary structural optimization (ESO) algorithm to optimal contact shape design for elastic bodies under the multiple load cases. To evaluate the reference stresses of each contact node in a finite element framework, an extreme stress criterion (the worst case design) and a weighted average criterion (Pareto design) are presented. In the extreme stress method, the highest nodal contact stress under all load cases is adopted as the reference level. In the weighted average method, the weighted sum of nodal contact stresses over all the load cases is regarded as the reference. It is found that these two criteria can produce different results. In this paper, the examples are presented to demonstrate some new features of contact shape optimization in the presence of the multiple load cases. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0045-7825 1879-2138 |
DOI: | 10.1016/j.cma.2004.12.024 |