Flow-assisted single-beam optothermal manipulation of microparticles

An optothermal tweezer was developed with a single-beam laser at 1550 nm for manipulation of colloidal microparticles. Strong absorption in water can thermally induce a localized flow, which exerts a Stokes' drag on the particles that complements the gradient force. Long-range capturing of 6 mi...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 18; no. 17; pp. 18483 - 18491
Main Authors Liu, Yangyang, Poon, Andrew W
Format Journal Article
LanguageEnglish
Published United States 16.08.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An optothermal tweezer was developed with a single-beam laser at 1550 nm for manipulation of colloidal microparticles. Strong absorption in water can thermally induce a localized flow, which exerts a Stokes' drag on the particles that complements the gradient force. Long-range capturing of 6 microm polystyrene particles over approximately 176 microm was observed with a tweezing power of approximately 7 mW. Transportation and levitation, targeted deposition and selective levitation of particles were explored to experimentally demonstrate the versatility of the optothermal tweezer as a multipurpose particle manipulation tool.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.18.018483