A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism

Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid th...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 176; p. 109151
Main Authors Chi, Zhiyuan, Guo, Zongwei, Xu, Zice, Zhang, Mengjie, Li, Ming, Shang, Lei, Ao, Yuhui
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.06.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid thermosets is still a challenge to synthesize high performance intrinsic flame-retardant bio-based epoxy resins. A flame-retardant bio-based epoxy resin (TEBA) was designed and synthesized via a three-step synthetic pathway from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)、diethanolamine and diphenolic acid (DPA). The chemical structures of the intermediate and final products were confirmed by 1HNMR and FTIR spectroscopy. TEBA cured with 4,4′-diaminodiphenylmethane (DDM) curing agent was compared with a standard bisphenol A epoxy resin (DGEBA). Due to the combination of phosphorus and nitrogen in the main chain, the TEBA-DDM shows superior flame retardancy. Compared with DGEBA-DDM, LOI of TEBA-DDM increased from 25.8% to 42.3%, UL-94 test rating from no rating to V-0 rating, self-extinguishing within 3s. The peak heat release rate (PHRR) in the cone calorimetry test decreased by 67%. total heat release (THR) and total smoke generation (TSP) decreased by 27% and 35%, respectively. In addition, the flame retardant mechanism of TEBA epoxy thermosets was researched by FTIR, residual char photograph, SEM, TG-IR analysis and Raman spectroscopy. Meanwhile, TEBA-DDM and DGEBA-DDM have comparable mechanical properties. •The main raw materials come from bio-based, which saves fossil resources.•Direct synthesis of intrinsic flame retardant resins, unlike additive and co-curing formulations.•Design of phosphorus-nitrogen combination flame retardant structure, excellent flame retardancy.•A comprehensive and detailed discussion of the flame retardant mechanism.
AbstractList Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid thermosets is still a challenge to synthesize high performance intrinsic flame-retardant bio-based epoxy resins. A flame-retardant bio-based epoxy resin (TEBA) was designed and synthesized via a three-step synthetic pathway from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)、diethanolamine and diphenolic acid (DPA). The chemical structures of the intermediate and final products were confirmed by ¹HNMR and FTIR spectroscopy. TEBA cured with 4,4′-diaminodiphenylmethane (DDM) curing agent was compared with a standard bisphenol A epoxy resin (DGEBA). Due to the combination of phosphorus and nitrogen in the main chain, the TEBA-DDM shows superior flame retardancy. Compared with DGEBA-DDM, LOI of TEBA-DDM increased from 25.8% to 42.3%, UL-94 test rating from no rating to V-0 rating, self-extinguishing within 3s. The peak heat release rate (PHRR) in the cone calorimetry test decreased by 67%. total heat release (THR) and total smoke generation (TSP) decreased by 27% and 35%, respectively. In addition, the flame retardant mechanism of TEBA epoxy thermosets was researched by FTIR, residual char photograph, SEM, TG-IR analysis and Raman spectroscopy. Meanwhile, TEBA-DDM and DGEBA-DDM have comparable mechanical properties.
Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid thermosets is still a challenge to synthesize high performance intrinsic flame-retardant bio-based epoxy resins. A flame-retardant bio-based epoxy resin (TEBA) was designed and synthesized via a three-step synthetic pathway from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)、diethanolamine and diphenolic acid (DPA). The chemical structures of the intermediate and final products were confirmed by 1HNMR and FTIR spectroscopy. TEBA cured with 4,4′-diaminodiphenylmethane (DDM) curing agent was compared with a standard bisphenol A epoxy resin (DGEBA). Due to the combination of phosphorus and nitrogen in the main chain, the TEBA-DDM shows superior flame retardancy. Compared with DGEBA-DDM, LOI of TEBA-DDM increased from 25.8% to 42.3%, UL-94 test rating from no rating to V-0 rating, self-extinguishing within 3s. The peak heat release rate (PHRR) in the cone calorimetry test decreased by 67%. total heat release (THR) and total smoke generation (TSP) decreased by 27% and 35%, respectively. In addition, the flame retardant mechanism of TEBA epoxy thermosets was researched by FTIR, residual char photograph, SEM, TG-IR analysis and Raman spectroscopy. Meanwhile, TEBA-DDM and DGEBA-DDM have comparable mechanical properties. •The main raw materials come from bio-based, which saves fossil resources.•Direct synthesis of intrinsic flame retardant resins, unlike additive and co-curing formulations.•Design of phosphorus-nitrogen combination flame retardant structure, excellent flame retardancy.•A comprehensive and detailed discussion of the flame retardant mechanism.
Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid thermosets is still a challenge to synthesize high performance intrinsic flame-retardant bio-based epoxy resins. A flame-retardant bio-based epoxy resin (TEBA) was designed and synthesized via a three-step synthetic pathway from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)、diethanolamine and diphenolic acid (DPA). The chemical structures of the intermediate and final products were confirmed by 1HNMR and FTIR spectroscopy. TEBA cured with 4,4′-diaminodiphenylmethane (DDM) curing agent was compared with a standard bisphenol A epoxy resin (DGEBA). Due to the combination of phosphorus and nitrogen in the main chain, the TEBA-DDM shows superior flame retardancy. Compared with DGEBA-DDM, LOI of TEBA-DDM increased from 25.8% to 42.3%, UL-94 test rating from no rating to V-0 rating, self-extinguishing within 3s. The peak heat release rate (PHRR) in the cone calorimetry test decreased by 67%. total heat release (THR) and total smoke generation (TSP) decreased by 27% and 35%, respectively. In addition, the flame retardant mechanism of TEBA epoxy thermosets was researched by FTIR, residual char photograph, SEM, TG-IR analysis and Raman spectroscopy. Meanwhile, TEBA-DDM and DGEBA-DDM have comparable mechanical properties.
ArticleNumber 109151
Author Zhang, Mengjie
Xu, Zice
Li, Ming
Ao, Yuhui
Chi, Zhiyuan
Guo, Zongwei
Shang, Lei
Author_xml – sequence: 1
  givenname: Zhiyuan
  surname: Chi
  fullname: Chi, Zhiyuan
– sequence: 2
  givenname: Zongwei
  surname: Guo
  fullname: Guo, Zongwei
– sequence: 3
  givenname: Zice
  surname: Xu
  fullname: Xu, Zice
– sequence: 4
  givenname: Mengjie
  surname: Zhang
  fullname: Zhang, Mengjie
– sequence: 5
  givenname: Ming
  surname: Li
  fullname: Li, Ming
– sequence: 6
  givenname: Lei
  surname: Shang
  fullname: Shang, Lei
  email: shanglei@ccut.edu.cn
– sequence: 7
  givenname: Yuhui
  surname: Ao
  fullname: Ao, Yuhui
  email: aoyuhui@ccut.edu.cn
BookMark eNqNkV1rFDEUhgep4Lb6HwIieOGs-ZovwYuy2lYorKBehzPJmW6WmWRMssX9E_5ms0wvZK8aSHLxPuch5L0sLpx3WBTvGF0zyuqP-_Xsx-Nk8CGAiQn6Naf8lHWsYi-KFWsbUXLB2UWxokyyUnSMviouY9zTvGTFVsXfa_Jl-31b9hDRkHnnY97hEEtnU_AP6MgwwoQkYIJgwCXSW_9E4-z_HHMSbaaCn4ix8w6dH60moK35RH4cXdrlPH5YNOV_GtzBo_WBgDNkQr0DZ-P0ung5wBjxzdN9Vfy6-fpzc1feb2-_ba7vSy06mfLJ20qClLqrxNAIzgcJBtqqp6YxXNS67zhtDQVJ9dCZHqoOdC2qBpvOtFJcFe8X7xz87wPGpCYbNY4jOPSHqLgUrJWyZlVG356he38ILr8uU5LKjtb8JPy8UDr4GAMOag52gnBUjKpTW2qvztpSp7bU0lae35zNa5sgWe9SADs-23K7WDD_3aPFoKK26DQaG1AnZbx9pukfvBXCXw
CitedBy_id crossref_primary_10_1002_app_56078
crossref_primary_10_1016_j_polymdegradstab_2022_109976
crossref_primary_10_1016_j_jaap_2023_106222
crossref_primary_10_1002_mame_202200550
crossref_primary_10_1016_j_compositesb_2024_111831
crossref_primary_10_1021_acsapm_4c00338
crossref_primary_10_1016_j_porgcoat_2023_107862
crossref_primary_10_3390_molecules29153708
crossref_primary_10_3390_polym14235279
crossref_primary_10_1007_s10973_023_12363_2
crossref_primary_10_1021_acs_iecr_4c02270
crossref_primary_10_1002_pen_26471
crossref_primary_10_1002_app_52036
crossref_primary_10_1016_j_polymdegradstab_2022_109989
crossref_primary_10_1016_j_cclet_2021_12_067
crossref_primary_10_1002_mame_202200565
crossref_primary_10_1016_j_coco_2021_100754
crossref_primary_10_1016_j_compositesa_2021_106771
crossref_primary_10_1016_j_jcis_2022_06_075
crossref_primary_10_1016_j_eurpolymj_2024_113605
crossref_primary_10_1016_j_cej_2022_140547
crossref_primary_10_3390_molecules28237885
crossref_primary_10_1007_s42823_022_00440_9
crossref_primary_10_1016_j_polymdegradstab_2024_110705
crossref_primary_10_1002_pi_6673
crossref_primary_10_1016_j_apsusc_2024_159565
crossref_primary_10_1177_09540083241227589
crossref_primary_10_1016_j_eurpolymj_2024_112845
crossref_primary_10_1002_app_53708
crossref_primary_10_1016_j_polymdegradstab_2022_110190
crossref_primary_10_1002_app_50792
crossref_primary_10_1016_j_seppur_2023_126148
crossref_primary_10_3390_molecules28020623
crossref_primary_10_1016_j_polymdegradstab_2023_110595
crossref_primary_10_1016_j_reactfunctpolym_2024_105854
crossref_primary_10_3390_molecules28114287
crossref_primary_10_1016_j_polymdegradstab_2024_110818
crossref_primary_10_1016_j_polymer_2023_126474
crossref_primary_10_1007_s10853_021_06384_1
crossref_primary_10_1021_acsapm_3c01574
crossref_primary_10_1007_s00289_024_05535_z
crossref_primary_10_1039_D4RA00166D
crossref_primary_10_1016_j_tca_2020_178722
crossref_primary_10_1002_app_56547
crossref_primary_10_1016_j_cej_2024_149212
crossref_primary_10_3390_molecules29184428
crossref_primary_10_1007_s10853_022_07399_y
crossref_primary_10_1016_j_polymertesting_2021_107284
crossref_primary_10_3390_coatings15040376
crossref_primary_10_3390_fire8020063
crossref_primary_10_2478_pjct_2023_0015
crossref_primary_10_3390_coatings13101663
crossref_primary_10_1002_app_56678
crossref_primary_10_1016_j_compositesa_2022_106837
crossref_primary_10_1016_j_reactfunctpolym_2020_104743
crossref_primary_10_1016_j_compositesb_2022_109701
crossref_primary_10_1016_j_polymdegradstab_2020_109426
crossref_primary_10_1016_j_aiepr_2022_07_003
crossref_primary_10_3390_molecules29010227
crossref_primary_10_3390_polym16050631
crossref_primary_10_1016_j_cej_2021_131226
crossref_primary_10_1007_s10973_024_13982_z
crossref_primary_10_1016_j_cej_2023_141775
crossref_primary_10_1016_j_progpolymsci_2020_101287
crossref_primary_10_1016_j_polymer_2021_123460
crossref_primary_10_1016_j_compositesb_2021_109043
crossref_primary_10_1002_pol_20210774
crossref_primary_10_1016_j_eurpolymj_2021_110904
crossref_primary_10_1007_s11705_021_2042_1
crossref_primary_10_1016_j_compositesa_2021_106726
crossref_primary_10_1007_s10965_022_03161_9
crossref_primary_10_3390_polym16233374
crossref_primary_10_1002_mame_202200408
crossref_primary_10_1007_s11998_022_00685_z
crossref_primary_10_1002_app_55242
crossref_primary_10_1002_app_52771
crossref_primary_10_1021_acsapm_5c00255
crossref_primary_10_1038_s41598_021_96927_y
crossref_primary_10_1002_pol_20240013
crossref_primary_10_1007_s00107_023_01977_w
crossref_primary_10_1007_s10904_021_01942_1
crossref_primary_10_1002_app_51688
crossref_primary_10_1016_j_porgcoat_2020_105850
crossref_primary_10_1016_j_jiec_2025_01_040
crossref_primary_10_1016_j_compscitech_2022_109776
crossref_primary_10_1007_s10904_021_02153_4
crossref_primary_10_1002_app_52896
crossref_primary_10_1016_j_jaap_2025_107029
crossref_primary_10_3390_polym16233343
crossref_primary_10_1002_app_54285
crossref_primary_10_1002_app_56582
crossref_primary_10_1016_j_progpolymsci_2021_101366
crossref_primary_10_1039_D0GC03451G
crossref_primary_10_1021_acssuschemeng_0c06665
crossref_primary_10_1021_acsapm_4c00822
crossref_primary_10_1021_acsapm_3c01928
crossref_primary_10_3390_polym15071655
crossref_primary_10_1002_app_54608
crossref_primary_10_1021_acsomega_1c00076
crossref_primary_10_1080_09276440_2020_1816068
crossref_primary_10_1016_j_cej_2025_161023
crossref_primary_10_1016_j_polymdegradstab_2025_111294
crossref_primary_10_1002_app_52426
crossref_primary_10_1002_app_53636
crossref_primary_10_1007_s10965_023_03447_6
crossref_primary_10_1016_j_polymdegradstab_2022_110206
crossref_primary_10_1016_j_compositesb_2024_111675
crossref_primary_10_1007_s10118_022_2779_0
crossref_primary_10_1021_acsapm_1c01792
crossref_primary_10_1016_j_colsurfa_2024_134195
crossref_primary_10_1016_j_matchemphys_2020_123222
crossref_primary_10_1016_j_ijbiomac_2024_129363
crossref_primary_10_1016_j_mtcomm_2024_109421
crossref_primary_10_1002_app_56359
crossref_primary_10_1016_j_lwt_2024_117069
crossref_primary_10_3390_polym15173521
crossref_primary_10_1016_j_colsurfa_2023_132834
crossref_primary_10_1080_10426507_2021_2012472
crossref_primary_10_1080_17480272_2022_2124384
crossref_primary_10_1007_s13726_022_01052_w
crossref_primary_10_1016_j_cej_2023_147715
crossref_primary_10_1016_j_compscitech_2023_110422
crossref_primary_10_1016_j_ijbiomac_2024_138182
crossref_primary_10_1021_acsami_1c19727
crossref_primary_10_1016_j_porgcoat_2022_107054
crossref_primary_10_1002_app_51593
crossref_primary_10_1016_j_ijbiomac_2024_139278
crossref_primary_10_1016_j_firesaf_2021_103472
crossref_primary_10_1007_s10965_023_03580_2
crossref_primary_10_1016_j_ijbiomac_2024_137889
crossref_primary_10_1051_e3sconf_202129301022
crossref_primary_10_1002_mame_202200259
crossref_primary_10_1080_00150193_2023_2198961
crossref_primary_10_1016_j_cej_2024_148998
crossref_primary_10_3390_polym16070871
crossref_primary_10_1016_j_compositesa_2022_107392
crossref_primary_10_1021_acs_jpca_4c01947
crossref_primary_10_1002_pol_20210328
crossref_primary_10_1016_j_polymdegradstab_2022_109909
crossref_primary_10_1002_app_50839
crossref_primary_10_1016_j_compositesb_2022_110493
crossref_primary_10_1016_j_mtcomm_2024_110325
crossref_primary_10_1177_09540083241280706
crossref_primary_10_1016_j_polymdegradstab_2021_109629
crossref_primary_10_1002_app_52342
crossref_primary_10_1002_app_53552
crossref_primary_10_1016_j_polymdegradstab_2021_109749
crossref_primary_10_1002_pat_6481
crossref_primary_10_1016_j_porgcoat_2024_108927
crossref_primary_10_1021_acs_iecr_3c01380
crossref_primary_10_1002_app_52224
crossref_primary_10_1021_acsapm_2c01863
crossref_primary_10_1002_app_53556
crossref_primary_10_32604_jrm_2022_019372
crossref_primary_10_1016_j_polymdegradstab_2024_111078
crossref_primary_10_1016_j_colsurfa_2023_132815
crossref_primary_10_1002_app_54890
crossref_primary_10_1016_j_compositesa_2024_108622
crossref_primary_10_1016_j_polymdegradstab_2022_109937
crossref_primary_10_1016_j_cej_2022_135022
crossref_primary_10_1016_j_jaap_2025_107081
crossref_primary_10_1002_cctc_202100032
crossref_primary_10_1016_j_eurpolymj_2021_110638
crossref_primary_10_1002_app_55623
crossref_primary_10_1016_j_polymdegradstab_2023_110410
crossref_primary_10_1002_pat_5616
crossref_primary_10_1016_j_polymdegradstab_2024_110890
crossref_primary_10_1016_j_polymdegradstab_2024_111066
crossref_primary_10_1016_j_mtchem_2024_102015
crossref_primary_10_1016_j_porgcoat_2022_107095
crossref_primary_10_1021_acssuschemeng_0c08302
crossref_primary_10_1002_app_55074
crossref_primary_10_1016_j_cej_2024_148867
crossref_primary_10_1016_j_mtchem_2024_102252
crossref_primary_10_1007_s00289_022_04570_y
crossref_primary_10_1055_a_2148_9433
crossref_primary_10_1021_acssuschemeng_1c02434
crossref_primary_10_1039_D3MA01074K
crossref_primary_10_1007_s13233_020_8102_4
crossref_primary_10_1016_j_indcrop_2022_115445
crossref_primary_10_1016_j_jmst_2024_02_006
crossref_primary_10_3389_fmats_2022_851754
crossref_primary_10_1016_j_cej_2022_138424
crossref_primary_10_1016_j_reactfunctpolym_2024_106011
crossref_primary_10_1016_j_jechem_2021_05_027
crossref_primary_10_1007_s10973_021_10592_x
crossref_primary_10_1016_j_eurpolymj_2022_111594
crossref_primary_10_1016_j_polymdegradstab_2024_110988
crossref_primary_10_1007_s10570_021_04159_0
crossref_primary_10_1021_acsomega_2c01545
crossref_primary_10_1016_j_reactfunctpolym_2023_105530
crossref_primary_10_1021_acs_iecr_3c01906
crossref_primary_10_1016_j_cej_2024_152785
crossref_primary_10_1007_s11814_021_0744_1
crossref_primary_10_1016_j_cej_2022_137906
crossref_primary_10_1002_app_56739
crossref_primary_10_1016_j_porgcoat_2024_108562
crossref_primary_10_1016_j_polymdegradstab_2021_109548
crossref_primary_10_1016_j_porgcoat_2024_108565
crossref_primary_10_1002_app_54680
crossref_primary_10_1016_j_colsurfa_2022_129789
crossref_primary_10_1016_j_eurpolymj_2022_111488
crossref_primary_10_1016_j_polymdegradstab_2024_110856
crossref_primary_10_1016_j_eurpolymj_2024_112937
crossref_primary_10_1016_j_porgcoat_2022_107316
crossref_primary_10_1016_j_polymdegradstab_2022_109841
crossref_primary_10_1016_j_polymdegradstab_2022_109962
crossref_primary_10_1002_pen_26877
crossref_primary_10_1016_j_polymdegradstab_2022_109840
crossref_primary_10_1002_pen_26755
crossref_primary_10_1002_app_51973
crossref_primary_10_1016_j_jtice_2025_106064
crossref_primary_10_1016_j_porgcoat_2025_109163
crossref_primary_10_1016_j_polymdegradstab_2022_110020
crossref_primary_10_1016_j_cej_2023_146241
crossref_primary_10_1002_pc_26776
Cites_doi 10.1016/j.eurpolymj.2015.03.048
10.1016/j.polymdegradstab.2018.09.001
10.1007/s10973-016-5456-0
10.1016/j.tca.2014.11.031
10.1021/acssuschemeng.7b02292
10.1016/j.polymdegradstab.2015.10.012
10.1016/j.polymdegradstab.2004.02.019
10.1039/C6RA06742E
10.1016/j.jhazmat.2019.03.045
10.1016/j.compositesb.2019.03.017
10.1021/am300843c
10.1016/j.polymdegradstab.2018.06.015
10.1039/C7GC02322G
10.1039/C6TC03932D
10.1002/(SICI)1097-4628(19990718)73:3<353::AID-APP6>3.0.CO;2-V
10.1016/j.matchemphys.2013.11.029
10.1002/pat.1859
10.1039/C2GC36630D
10.1039/C5TA07115A
10.1016/j.indcrop.2016.07.020
10.1039/C2GC36715G
10.1021/acs.macromol.7b00097
10.1039/C4PY00514G
10.1016/j.polymdegradstab.2004.01.027
10.1002/fam.949
10.1002/ejlt.201300193
10.1016/j.polymdegradstab.2018.03.006
10.1016/j.eurpolymj.2017.05.007
10.1016/j.polymdegradstab.2016.08.013
10.1038/s41467-019-10178-0
10.1016/j.polymdegradstab.2015.04.023
10.1016/j.polymdegradstab.2018.12.007
10.1039/C5TA02939B
10.1002/mame.201000242
10.1016/j.polymdegradstab.2008.02.011
10.1016/j.jhazmat.2019.120793
10.1021/acs.biomac.5b00014
10.1021/acs.iecr.5b00315
10.1016/j.jiec.2015.03.026
10.1016/j.polymdegradstab.2015.11.018
10.1007/s11426-013-5025-3
10.1039/C4PY01724B
10.1002/mame.200700287
10.1016/j.polymdegradstab.2014.12.014
10.1021/acssuschemeng.8b00439
10.1016/j.polymdegradstab.2017.01.014
10.1021/acssuschemeng.9b02629
10.1016/j.polymdegradstab.2015.10.009
10.1039/c2ra20739g
10.1021/acs.macromol.7b01068
10.1016/j.polymdegradstab.2014.07.020
10.1021/acs.macromol.8b02090
10.1016/j.polymdegradstab.2016.07.013
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jun 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2020
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.polymdegradstab.2020.109151
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2321
ExternalDocumentID 10_1016_j_polymdegradstab_2020_109151
S0141391020300835
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSK
SSM
SSZ
T5K
WH7
WUQ
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8FD
EFKBS
JG9
7S9
L.6
ID FETCH-LOGICAL-c394t-c32854a44c953f7322f4ada85b0d7d236cb9208d0a40cf9dba59ac6357e79d843
IEDL.DBID .~1
ISSN 0141-3910
IngestDate Fri Jul 11 09:42:56 EDT 2025
Fri Jul 25 06:40:29 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Tue Jul 01 02:29:50 EDT 2025
Fri Feb 23 02:46:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mechanical properties
Phosphorus-nitrogen combination
Intrinsic flame-retardant
Bio-based epoxy resin
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-c32854a44c953f7322f4ada85b0d7d236cb9208d0a40cf9dba59ac6357e79d843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2440490624
PQPubID 2045418
ParticipantIDs proquest_miscellaneous_2431844615
proquest_journals_2440490624
crossref_primary_10_1016_j_polymdegradstab_2020_109151
crossref_citationtrail_10_1016_j_polymdegradstab_2020_109151
elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2020_109151
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Polymer degradation and stability
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Toldy, Szabó, Novák, Madarász, Tóth, Marosi (bib22) 2008; 93
Gao, Zheng, Nie, Wang (bib43) 2016; 127
Huo, Wang, Yang, Wang, Zhang, Zhang, Chen, Tang (bib49) 2016; 131
Wang, Cai (bib36) 2017; 137
Ma, Liu, Jiang, Fan, Feng, Zhu (bib13) 2013; 57
Liu, Zhao, Tan, Chen, Wang (bib54) 2015; 122
Salmeia, Gaan (bib31) 2015; 113
Ecochard, Decostanzi, Negrell, Sonnier, Caillol (bib8) 2019
Xu, Wirasaputra, Liu, Yuan, Zhao (bib50) 2015; 122
Ma, Liu, Jiang, Tang, Zhang, Zhu (bib14) 2013; 15
Wang, Shieh (bib37) 1999; 73
Pourchet, Sonnier, Ben-Abdelkader, Gaillard, Ruiz, Placet, Plasseraud, Boni (bib7) 2019; 7
Liu, Zeng, Deng, Liao, Pang, Guo (bib19) 2013; 15
Mauerer (bib23) 2005; 88
Jian, An, Li, Chen, Wang, Zeng (bib9) 2017; 50
Feng, East, Hammond, Zhang, Jaffe (bib18) 2011; 22
Maiorana, Spinella, Gross (bib20) 2015; 16
Xu, Xu, Leng, Li (bib34) 2016; 123
Ferdosian, Yuan, Anderson, Xu (bib44) 2016; 91
Jing, Zhang, Tang, Fang (bib21) 2016; 6
Schmidt, Ciesielski, Greiner, Döring (bib29) 2018; 158
Zhao, Liang, Wang, Li, Liu (bib27) 2016; 133
Schartel, Hull (bib46) 2007; 31
Fu, Wang, Xing, Zhang, Song, Hu (bib47) 2018; 151
Wu, Luo, Cernetic, Chen, Chiang, Jen (bib4) 2016; 4
Tao, Duan, Dong, Wang, Yang (bib33) 2018; 154
Levchik, Piotrowski, Weil, Yao (bib24) 2005; 88
Artner, Ciesielski, Walter, Döring, Perez, Sandler, Altstädt, Schartel (bib35) 2008; 293
Jiang, Sun, Zhang, Liu, Ru, Zhang, Zhao (bib11) 2019; 160
Liu, Tang, Wang, Wu (bib45) 2012; 2
Jaillet, Darroman, Ratsimihety, Auvergne, Boutevin, Caillol (bib16) 2014; 116
Xu, Xu, Li (bib41) 2014; 109
Faye, Decostanzi, Ecochard, Caillol (bib10) 2017; 19
Dai, Peng, Teng, Liu, Liu, Shen, Mahmud, Zhu, Liu (bib3) 2018; 6
Perret, Schartel, Stöß, Ciesielski, Diederichs, Döring, Krämer, Altstädt (bib32) 2011; 296
Qi, Wang, Kou, Pang, Zhang, Li, Liu, Weng, Jian (bib39) 2019; 10
Hu, Yang, Jiang, He, Liu, Huang, Wan (bib2) 2019; 379
Liu, Xu, Xu, Li, Hu, Li (bib28) 2019; 167
Jian, Ai, Xia, Zhao, Zhao (bib48) 2019; 371
Wan, Gan, Li, Molina-Aldareguia, Wang (bib5) 2015; 3
Shibata, Ohkita (bib6) 2017; 92
Nguyen, Livi, Soares, Barra, Gérard, Duchet-Rumeau (bib15) 2017; 5
Qian, Song, Bihe, Yu, Shi, Hu, Yuen (bib51) 2014; 143
Zhao, Liu, Peng, Liao, Wang (bib52) 2015; 118
Hong, Radojčić, Ionescu, Petrović, Eastwood (bib17) 2014; 5
Liu, Chen, Yuan, Song, Chang, Chen, Xu, Dai (bib38) 2016; 4
Fache, Viola, Auvergne, Boutevin, Caillol (bib12) 2015; 68
Kasemsiri, Neramittagapong, Chindaprasirt (bib40) 2015; 600
Sun, Wang, Wu (bib42) 2012; 4
Qiu, Qian, Feng, Jin, Hao (bib53) 2018; 51
Chao, Li, Gu, Han, Jia, Wang, Zhou, Wang (bib26) 2015; 6
You, Cheng, Tang, He (bib30) 2015; 54
Jin, Li, Park (bib1) 2015; 29
Wang, Ma, Xu, Liu, Dai, Wang, Liu, Chen, Shen, Wei, Zhu (bib25) 2017; 50
Wan (10.1016/j.polymdegradstab.2020.109151_bib5) 2015; 3
Xu (10.1016/j.polymdegradstab.2020.109151_bib34) 2016; 123
Liu (10.1016/j.polymdegradstab.2020.109151_bib38) 2016; 4
Ferdosian (10.1016/j.polymdegradstab.2020.109151_bib44) 2016; 91
Hong (10.1016/j.polymdegradstab.2020.109151_bib17) 2014; 5
Wang (10.1016/j.polymdegradstab.2020.109151_bib36) 2017; 137
Jiang (10.1016/j.polymdegradstab.2020.109151_bib11) 2019; 160
Schmidt (10.1016/j.polymdegradstab.2020.109151_bib29) 2018; 158
Perret (10.1016/j.polymdegradstab.2020.109151_bib32) 2011; 296
Fache (10.1016/j.polymdegradstab.2020.109151_bib12) 2015; 68
Salmeia (10.1016/j.polymdegradstab.2020.109151_bib31) 2015; 113
Qi (10.1016/j.polymdegradstab.2020.109151_bib39) 2019; 10
Xu (10.1016/j.polymdegradstab.2020.109151_bib41) 2014; 109
Maiorana (10.1016/j.polymdegradstab.2020.109151_bib20) 2015; 16
Qian (10.1016/j.polymdegradstab.2020.109151_bib51) 2014; 143
Hu (10.1016/j.polymdegradstab.2020.109151_bib2) 2019; 379
Ecochard (10.1016/j.polymdegradstab.2020.109151_bib8) 2019
Kasemsiri (10.1016/j.polymdegradstab.2020.109151_bib40) 2015; 600
Mauerer (10.1016/j.polymdegradstab.2020.109151_bib23) 2005; 88
Zhao (10.1016/j.polymdegradstab.2020.109151_bib27) 2016; 133
Qiu (10.1016/j.polymdegradstab.2020.109151_bib53) 2018; 51
Ma (10.1016/j.polymdegradstab.2020.109151_bib14) 2013; 15
Xu (10.1016/j.polymdegradstab.2020.109151_bib50) 2015; 122
Wang (10.1016/j.polymdegradstab.2020.109151_bib25) 2017; 50
Shibata (10.1016/j.polymdegradstab.2020.109151_bib6) 2017; 92
Toldy (10.1016/j.polymdegradstab.2020.109151_bib22) 2008; 93
Liu (10.1016/j.polymdegradstab.2020.109151_bib28) 2019; 167
Jing (10.1016/j.polymdegradstab.2020.109151_bib21) 2016; 6
Zhao (10.1016/j.polymdegradstab.2020.109151_bib52) 2015; 118
Fu (10.1016/j.polymdegradstab.2020.109151_bib47) 2018; 151
Sun (10.1016/j.polymdegradstab.2020.109151_bib42) 2012; 4
Tao (10.1016/j.polymdegradstab.2020.109151_bib33) 2018; 154
Wang (10.1016/j.polymdegradstab.2020.109151_bib37) 1999; 73
Feng (10.1016/j.polymdegradstab.2020.109151_bib18) 2011; 22
Gao (10.1016/j.polymdegradstab.2020.109151_bib43) 2016; 127
Huo (10.1016/j.polymdegradstab.2020.109151_bib49) 2016; 131
Artner (10.1016/j.polymdegradstab.2020.109151_bib35) 2008; 293
Ma (10.1016/j.polymdegradstab.2020.109151_bib13) 2013; 57
Chao (10.1016/j.polymdegradstab.2020.109151_bib26) 2015; 6
Nguyen (10.1016/j.polymdegradstab.2020.109151_bib15) 2017; 5
Jaillet (10.1016/j.polymdegradstab.2020.109151_bib16) 2014; 116
Liu (10.1016/j.polymdegradstab.2020.109151_bib54) 2015; 122
Faye (10.1016/j.polymdegradstab.2020.109151_bib10) 2017; 19
Pourchet (10.1016/j.polymdegradstab.2020.109151_bib7) 2019; 7
Jian (10.1016/j.polymdegradstab.2020.109151_bib48) 2019; 371
Jin (10.1016/j.polymdegradstab.2020.109151_bib1) 2015; 29
Dai (10.1016/j.polymdegradstab.2020.109151_bib3) 2018; 6
Schartel (10.1016/j.polymdegradstab.2020.109151_bib46) 2007; 31
Jian (10.1016/j.polymdegradstab.2020.109151_bib9) 2017; 50
Wu (10.1016/j.polymdegradstab.2020.109151_bib4) 2016; 4
You (10.1016/j.polymdegradstab.2020.109151_bib30) 2015; 54
Levchik (10.1016/j.polymdegradstab.2020.109151_bib24) 2005; 88
Liu (10.1016/j.polymdegradstab.2020.109151_bib19) 2013; 15
Liu (10.1016/j.polymdegradstab.2020.109151_bib45) 2012; 2
References_xml – volume: 54
  start-page: 7309
  year: 2015
  end-page: 7319
  ident: bib30
  article-title: Functional group effect on char formation, flame retardancy and mechanical properties of phosphonate–triazine-based compound as flame retardant in epoxy resin
  publication-title: Ind. Eng. Chem. Res.
– volume: 51
  start-page: 9992
  year: 2018
  end-page: 10002
  ident: bib53
  article-title: Toughening effect and flame-retardant behaviors of phosphaphenanthrene/phenylsiloxane bigroup macromolecules in epoxy thermoset
  publication-title: Macromolecules
– volume: 4
  start-page: 10286
  year: 2016
  end-page: 10292
  ident: bib4
  article-title: PCBM-doped electro-optic materials: investigation of dielectric, optical and electro-optic properties for highly efficient poling
  publication-title: J. Mater. Chem. C
– volume: 160
  start-page: 45
  year: 2019
  end-page: 52
  ident: bib11
  article-title: Novel biobased epoxy resin thermosets derived from eugenol and vanillin
  publication-title: Polym. Degrad. Stabil.
– volume: 73
  start-page: 353
  year: 1999
  end-page: 361
  ident: bib37
  article-title: Phosphorus-containing epoxy resin for an electronic application
  publication-title: J. Appl. Polym. Sci.
– volume: 118
  start-page: 120
  year: 2015
  end-page: 129
  ident: bib52
  article-title: Synthesis of a novel PEPA-substituted polyphosphoramide with high char residues and its performance as an intumescent flame retardant for epoxy resins
  publication-title: Polym. Degrad. Stabil.
– volume: 10
  start-page: 2107
  year: 2019
  ident: bib39
  article-title: Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock
  publication-title: Nat. Commun.
– start-page: 24
  year: 2019
  ident: bib8
  article-title: Cardanol and eugenol based flame retardant epoxy monomers for thermostable networks
  publication-title: Molecules
– volume: 113
  start-page: 119
  year: 2015
  end-page: 134
  ident: bib31
  article-title: An overview of some recent advances in DOPO-derivatives: chemistry and flame retardant applications
  publication-title: Polym. Degrad. Stabil.
– volume: 88
  start-page: 70
  year: 2005
  end-page: 73
  ident: bib23
  article-title: New reactive, halogen-free flame retardant system for epoxy resins
  publication-title: Polym. Degrad. Stabil.
– volume: 296
  start-page: 14
  year: 2011
  end-page: 30
  ident: bib32
  article-title: A new halogen-free flame retardant based on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries
  publication-title: Macromol. Mater. Eng.
– volume: 4
  start-page: 4047
  year: 2012
  end-page: 4061
  ident: bib42
  article-title: Novel spirocyclic phosphazene-based epoxy resin for halogen-free fire resistance: synthesis, curing behaviors, and flammability characteristics
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 21907
  year: 2015
  end-page: 21921
  ident: bib5
  article-title: A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties
  publication-title: J. Mater. Chem.
– volume: 22
  start-page: 139
  year: 2011
  end-page: 150
  ident: bib18
  article-title: Overview of advances in sugar-based polymers
  publication-title: Polym. Adv. Technol.
– volume: 167
  start-page: 422
  year: 2019
  end-page: 433
  ident: bib28
  article-title: Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins
  publication-title: Compos. B Eng.
– volume: 7
  start-page: 14074
  year: 2019
  end-page: 14088
  ident: bib7
  article-title: New reactive isoeugenol based phosphate flame retardant: toward green epoxy resins
  publication-title: ACS Sustain. Chem. Eng.
– volume: 92
  start-page: 165
  year: 2017
  end-page: 173
  ident: bib6
  article-title: Fully biobased epoxy resin systems composed of a vanillin-derived epoxy resin and renewable phenolic hardeners
  publication-title: Eur. Polym. J.
– volume: 88
  start-page: 57
  year: 2005
  end-page: 62
  ident: bib24
  article-title: New developments in flame retardancy of epoxy resins
  publication-title: Polym. Degrad. Stabil.
– volume: 31
  start-page: 327
  year: 2007
  end-page: 354
  ident: bib46
  article-title: Development of fire-retarded materials—interpretation of cone calorimeter data
  publication-title: Fire Mater.
– volume: 158
  start-page: 190
  year: 2018
  end-page: 201
  ident: bib29
  article-title: Novel organophosphorus flame retardants and their synergistic application in novolac epoxy resin
  publication-title: Polym. Degrad. Stabil.
– volume: 5
  start-page: 5360
  year: 2014
  end-page: 5368
  ident: bib17
  article-title: Advanced materials from corn: isosorbide-based epoxy resins
  publication-title: Polym. Chem.
– volume: 600
  start-page: 20
  year: 2015
  end-page: 27
  ident: bib40
  article-title: Curing kinetic, thermal and adhesive properties of epoxy resin cured with cashew nut shell liquid
  publication-title: Thermochim. Acta
– volume: 57
  start-page: 379
  year: 2013
  end-page: 388
  ident: bib13
  article-title: Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid
  publication-title: Sci. China Chem.
– volume: 50
  start-page: 1892
  year: 2017
  end-page: 1901
  ident: bib25
  article-title: Vanillin-Derived high-performance flame retardant epoxy resins: facile synthesis and properties
  publication-title: Macromolecules
– volume: 379
  start-page: 120793
  year: 2019
  ident: bib2
  article-title: Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen-containing flame retardant and its application in reducing the fire hazard of epoxy resin
  publication-title: J. Hazard Mater.
– volume: 151
  start-page: 172
  year: 2018
  end-page: 180
  ident: bib47
  article-title: Two-dimensional cardanol-derived zirconium phosphate hybrid as flame retardant and smoke suppressant for epoxy resin
  publication-title: Polym. Degrad. Stabil.
– volume: 137
  start-page: 138
  year: 2017
  end-page: 150
  ident: bib36
  article-title: Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism
  publication-title: Polym. Degrad. Stabil.
– volume: 123
  start-page: 105
  year: 2016
  end-page: 114
  ident: bib34
  article-title: Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins
  publication-title: Polym. Degrad. Stabil.
– volume: 4
  start-page: 3462
  year: 2016
  end-page: 3470
  ident: bib38
  article-title: Modification of epoxy resin through the self-assembly of a surfactant-like multi-element flame retardant
  publication-title: J. Mater. Chem.
– volume: 371
  start-page: 529
  year: 2019
  end-page: 539
  ident: bib48
  article-title: Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins
  publication-title: J. Hazard Mater.
– volume: 122
  start-page: 66
  year: 2015
  end-page: 76
  ident: bib54
  article-title: Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: from thermal crosslinking to flame retardance
  publication-title: Polym. Degrad. Stabil.
– volume: 93
  start-page: 2007
  year: 2008
  end-page: 2013
  ident: bib22
  article-title: Intrinsically flame retardant epoxy resin – fire performance and background – Part II
  publication-title: Polym. Degrad. Stabil.
– volume: 19
  start-page: 5236
  year: 2017
  end-page: 5242
  ident: bib10
  article-title: Eugenol bio-based epoxy thermosets: from cloves to applied materials
  publication-title: Green Chem.
– volume: 116
  start-page: 63
  year: 2014
  end-page: 73
  ident: bib16
  article-title: New biobased epoxy materials from cardanol
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 6
  start-page: 49019
  year: 2016
  end-page: 49027
  ident: bib21
  article-title: Synthesis of a highly efficient phosphorus-containing flame retardant utilizing plant-derived diphenolic acids and its application in polylactic acid
  publication-title: RSC Adv.
– volume: 2
  start-page: 5789
  year: 2012
  ident: bib45
  article-title: Synthesis, characterization and curing properties of a novel cyclolinear phosphazene-based epoxy resin for halogen-free flame retardancy and high performance
  publication-title: RSC Adv.
– volume: 15
  start-page: 245
  year: 2013
  end-page: 254
  ident: bib14
  article-title: Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers
  publication-title: Green Chem.
– volume: 29
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib1
  article-title: Synthesis and application of epoxy resins: a review
  publication-title: J. Ind. Eng. Chem.
– volume: 127
  start-page: 1419
  year: 2016
  end-page: 1430
  ident: bib43
  article-title: Thermal performance, mechanical property and fire behavior of epoxy thermoset based on reactive phosphorus-containing epoxy monomer
  publication-title: J. Therm. Anal. Calorim.
– volume: 68
  start-page: 526
  year: 2015
  end-page: 535
  ident: bib12
  article-title: Biobased epoxy thermosets from vanillin-derived oligomers
  publication-title: Eur. Polym. J.
– volume: 131
  start-page: 106
  year: 2016
  end-page: 113
  ident: bib49
  article-title: Synthesis of a novel phosphorus-nitrogen type flame retardant composed of maleimide, triazine-trione, and phosphaphenanthrene and its flame retardant effect on epoxy resin
  publication-title: Polym. Degrad. Stabil.
– volume: 5
  start-page: 8429
  year: 2017
  end-page: 8438
  ident: bib15
  article-title: Development of sustainable thermosets from cardanol-based epoxy prepolymer and ionic liquids
  publication-title: ACS Sustain. Chem. Eng.
– volume: 143
  start-page: 1243
  year: 2014
  end-page: 1252
  ident: bib51
  article-title: Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system
  publication-title: Mater. Chem. Phys.
– volume: 133
  start-page: 162
  year: 2016
  end-page: 173
  ident: bib27
  article-title: Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin
  publication-title: Polym. Degrad. Stabil.
– volume: 91
  start-page: 295
  year: 2016
  end-page: 301
  ident: bib44
  article-title: Synthesis and characterization of hydrolysis lignin-based epoxy resins
  publication-title: Ind. Crop. Prod.
– volume: 154
  start-page: 285
  year: 2018
  end-page: 294
  ident: bib33
  article-title: Synthesis of an acrylate constructed by phosphaphenanthrene and triazine-trione and its application in intrinsic flame retardant vinyl ester resin
  publication-title: Polym. Degrad. Stabil.
– volume: 109
  start-page: 240
  year: 2014
  end-page: 248
  ident: bib41
  article-title: Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance
  publication-title: Polym. Degrad. Stabil.
– volume: 122
  start-page: 44
  year: 2015
  end-page: 51
  ident: bib50
  article-title: Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent
  publication-title: Polym. Degrad. Stabil.
– volume: 50
  start-page: 5729
  year: 2017
  end-page: 5738
  ident: bib9
  article-title: All plant oil derived epoxy thermosets with excellent comprehensive properties
  publication-title: Macromolecules
– volume: 293
  start-page: 503
  year: 2008
  end-page: 514
  ident: bib35
  article-title: A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems
  publication-title: Macromol. Mater. Eng.
– volume: 15
  start-page: 81
  year: 2013
  end-page: 84
  ident: bib19
  article-title: Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid
  publication-title: Green Chem.
– volume: 6
  start-page: 2977
  year: 2015
  end-page: 2985
  ident: bib26
  article-title: Novel phosphorus–nitrogen–silicon flame retardants and their application in cycloaliphatic epoxy systems
  publication-title: Polym. Chem.
– volume: 6
  start-page: 7589
  year: 2018
  end-page: 7599
  ident: bib3
  article-title: High-Performing and Fire-Resistant Biobased Epoxy Resin from Renewable Sources
  publication-title: ACS Sustain. Chem. Eng.
– volume: 16
  start-page: 1021
  year: 2015
  end-page: 1031
  ident: bib20
  article-title: Bio-based alternative to the diglycidyl ether of bisphenol A with controlled materials properties
  publication-title: Biomacromolecules
– volume: 68
  start-page: 526
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109151_bib12
  article-title: Biobased epoxy thermosets from vanillin-derived oligomers
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2015.03.048
– volume: 158
  start-page: 190
  year: 2018
  ident: 10.1016/j.polymdegradstab.2020.109151_bib29
  article-title: Novel organophosphorus flame retardants and their synergistic application in novolac epoxy resin
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2018.09.001
– volume: 127
  start-page: 1419
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109151_bib43
  article-title: Thermal performance, mechanical property and fire behavior of epoxy thermoset based on reactive phosphorus-containing epoxy monomer
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-016-5456-0
– volume: 600
  start-page: 20
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109151_bib40
  article-title: Curing kinetic, thermal and adhesive properties of epoxy resin cured with cashew nut shell liquid
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2014.11.031
– volume: 5
  start-page: 8429
  year: 2017
  ident: 10.1016/j.polymdegradstab.2020.109151_bib15
  article-title: Development of sustainable thermosets from cardanol-based epoxy prepolymer and ionic liquids
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02292
– volume: 122
  start-page: 44
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109151_bib50
  article-title: Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2015.10.012
– volume: 88
  start-page: 57
  year: 2005
  ident: 10.1016/j.polymdegradstab.2020.109151_bib24
  article-title: New developments in flame retardancy of epoxy resins
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2004.02.019
– volume: 6
  start-page: 49019
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109151_bib21
  article-title: Synthesis of a highly efficient phosphorus-containing flame retardant utilizing plant-derived diphenolic acids and its application in polylactic acid
  publication-title: RSC Adv.
  doi: 10.1039/C6RA06742E
– volume: 371
  start-page: 529
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109151_bib48
  article-title: Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.03.045
– volume: 167
  start-page: 422
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109151_bib28
  article-title: Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.03.017
– volume: 4
  start-page: 4047
  year: 2012
  ident: 10.1016/j.polymdegradstab.2020.109151_bib42
  article-title: Novel spirocyclic phosphazene-based epoxy resin for halogen-free fire resistance: synthesis, curing behaviors, and flammability characteristics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am300843c
– volume: 154
  start-page: 285
  year: 2018
  ident: 10.1016/j.polymdegradstab.2020.109151_bib33
  article-title: Synthesis of an acrylate constructed by phosphaphenanthrene and triazine-trione and its application in intrinsic flame retardant vinyl ester resin
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2018.06.015
– start-page: 24
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109151_bib8
  article-title: Cardanol and eugenol based flame retardant epoxy monomers for thermostable networks
  publication-title: Molecules
– volume: 19
  start-page: 5236
  year: 2017
  ident: 10.1016/j.polymdegradstab.2020.109151_bib10
  article-title: Eugenol bio-based epoxy thermosets: from cloves to applied materials
  publication-title: Green Chem.
  doi: 10.1039/C7GC02322G
– volume: 4
  start-page: 10286
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109151_bib4
  article-title: PCBM-doped electro-optic materials: investigation of dielectric, optical and electro-optic properties for highly efficient poling
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03932D
– volume: 73
  start-page: 353
  year: 1999
  ident: 10.1016/j.polymdegradstab.2020.109151_bib37
  article-title: Phosphorus-containing epoxy resin for an electronic application
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19990718)73:3<353::AID-APP6>3.0.CO;2-V
– volume: 143
  start-page: 1243
  year: 2014
  ident: 10.1016/j.polymdegradstab.2020.109151_bib51
  article-title: Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2013.11.029
– volume: 22
  start-page: 139
  year: 2011
  ident: 10.1016/j.polymdegradstab.2020.109151_bib18
  article-title: Overview of advances in sugar-based polymers
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1859
– volume: 15
  start-page: 81
  year: 2013
  ident: 10.1016/j.polymdegradstab.2020.109151_bib19
  article-title: Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid
  publication-title: Green Chem.
  doi: 10.1039/C2GC36630D
– volume: 4
  start-page: 3462
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109151_bib38
  article-title: Modification of epoxy resin through the self-assembly of a surfactant-like multi-element flame retardant
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA07115A
– volume: 91
  start-page: 295
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109151_bib44
  article-title: Synthesis and characterization of hydrolysis lignin-based epoxy resins
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2016.07.020
– volume: 15
  start-page: 245
  year: 2013
  ident: 10.1016/j.polymdegradstab.2020.109151_bib14
  article-title: Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers
  publication-title: Green Chem.
  doi: 10.1039/C2GC36715G
– volume: 50
  start-page: 1892
  year: 2017
  ident: 10.1016/j.polymdegradstab.2020.109151_bib25
  article-title: Vanillin-Derived high-performance flame retardant epoxy resins: facile synthesis and properties
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b00097
– volume: 5
  start-page: 5360
  year: 2014
  ident: 10.1016/j.polymdegradstab.2020.109151_bib17
  article-title: Advanced materials from corn: isosorbide-based epoxy resins
  publication-title: Polym. Chem.
  doi: 10.1039/C4PY00514G
– volume: 88
  start-page: 70
  year: 2005
  ident: 10.1016/j.polymdegradstab.2020.109151_bib23
  article-title: New reactive, halogen-free flame retardant system for epoxy resins
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2004.01.027
– volume: 31
  start-page: 327
  year: 2007
  ident: 10.1016/j.polymdegradstab.2020.109151_bib46
  article-title: Development of fire-retarded materials—interpretation of cone calorimeter data
  publication-title: Fire Mater.
  doi: 10.1002/fam.949
– volume: 116
  start-page: 63
  year: 2014
  ident: 10.1016/j.polymdegradstab.2020.109151_bib16
  article-title: New biobased epoxy materials from cardanol
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.201300193
– volume: 151
  start-page: 172
  year: 2018
  ident: 10.1016/j.polymdegradstab.2020.109151_bib47
  article-title: Two-dimensional cardanol-derived zirconium phosphate hybrid as flame retardant and smoke suppressant for epoxy resin
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2018.03.006
– volume: 92
  start-page: 165
  year: 2017
  ident: 10.1016/j.polymdegradstab.2020.109151_bib6
  article-title: Fully biobased epoxy resin systems composed of a vanillin-derived epoxy resin and renewable phenolic hardeners
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2017.05.007
– volume: 133
  start-page: 162
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109151_bib27
  article-title: Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2016.08.013
– volume: 10
  start-page: 2107
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109151_bib39
  article-title: Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10178-0
– volume: 118
  start-page: 120
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109151_bib52
  article-title: Synthesis of a novel PEPA-substituted polyphosphoramide with high char residues and its performance as an intumescent flame retardant for epoxy resins
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2015.04.023
– volume: 160
  start-page: 45
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109151_bib11
  article-title: Novel biobased epoxy resin thermosets derived from eugenol and vanillin
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2018.12.007
– volume: 3
  start-page: 21907
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109151_bib5
  article-title: A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA02939B
– volume: 296
  start-page: 14
  year: 2011
  ident: 10.1016/j.polymdegradstab.2020.109151_bib32
  article-title: A new halogen-free flame retardant based on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201000242
– volume: 93
  start-page: 2007
  year: 2008
  ident: 10.1016/j.polymdegradstab.2020.109151_bib22
  article-title: Intrinsically flame retardant epoxy resin – fire performance and background – Part II
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2008.02.011
– volume: 379
  start-page: 120793
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109151_bib2
  article-title: Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen-containing flame retardant and its application in reducing the fire hazard of epoxy resin
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.120793
– volume: 16
  start-page: 1021
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109151_bib20
  article-title: Bio-based alternative to the diglycidyl ether of bisphenol A with controlled materials properties
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00014
– volume: 54
  start-page: 7309
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109151_bib30
  article-title: Functional group effect on char formation, flame retardancy and mechanical properties of phosphonate–triazine-based compound as flame retardant in epoxy resin
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b00315
– volume: 29
  start-page: 1
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109151_bib1
  article-title: Synthesis and application of epoxy resins: a review
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.03.026
– volume: 123
  start-page: 105
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109151_bib34
  article-title: Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2015.11.018
– volume: 57
  start-page: 379
  year: 2013
  ident: 10.1016/j.polymdegradstab.2020.109151_bib13
  article-title: Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-013-5025-3
– volume: 6
  start-page: 2977
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109151_bib26
  article-title: Novel phosphorus–nitrogen–silicon flame retardants and their application in cycloaliphatic epoxy systems
  publication-title: Polym. Chem.
  doi: 10.1039/C4PY01724B
– volume: 293
  start-page: 503
  year: 2008
  ident: 10.1016/j.polymdegradstab.2020.109151_bib35
  article-title: A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.200700287
– volume: 113
  start-page: 119
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109151_bib31
  article-title: An overview of some recent advances in DOPO-derivatives: chemistry and flame retardant applications
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2014.12.014
– volume: 6
  start-page: 7589
  year: 2018
  ident: 10.1016/j.polymdegradstab.2020.109151_bib3
  article-title: High-Performing and Fire-Resistant Biobased Epoxy Resin from Renewable Sources
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00439
– volume: 137
  start-page: 138
  year: 2017
  ident: 10.1016/j.polymdegradstab.2020.109151_bib36
  article-title: Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2017.01.014
– volume: 7
  start-page: 14074
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109151_bib7
  article-title: New reactive isoeugenol based phosphate flame retardant: toward green epoxy resins
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02629
– volume: 122
  start-page: 66
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109151_bib54
  article-title: Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: from thermal crosslinking to flame retardance
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2015.10.009
– volume: 2
  start-page: 5789
  year: 2012
  ident: 10.1016/j.polymdegradstab.2020.109151_bib45
  article-title: Synthesis, characterization and curing properties of a novel cyclolinear phosphazene-based epoxy resin for halogen-free flame retardancy and high performance
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20739g
– volume: 50
  start-page: 5729
  year: 2017
  ident: 10.1016/j.polymdegradstab.2020.109151_bib9
  article-title: All plant oil derived epoxy thermosets with excellent comprehensive properties
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b01068
– volume: 109
  start-page: 240
  year: 2014
  ident: 10.1016/j.polymdegradstab.2020.109151_bib41
  article-title: Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2014.07.020
– volume: 51
  start-page: 9992
  year: 2018
  ident: 10.1016/j.polymdegradstab.2020.109151_bib53
  article-title: Toughening effect and flame-retardant behaviors of phosphaphenanthrene/phenylsiloxane bigroup macromolecules in epoxy thermoset
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b02090
– volume: 131
  start-page: 106
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109151_bib49
  article-title: Synthesis of a novel phosphorus-nitrogen type flame retardant composed of maleimide, triazine-trione, and phosphaphenanthrene and its flame retardant effect on epoxy resin
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2016.07.013
SSID ssj0000451
Score 2.6570885
Snippet Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109151
SubjectTerms Bio-based epoxy resin
Bisphenol A
calorimetry
chemical structure
Chemical synthesis
Curing agents
Diethanolamine
Enthalpy
epoxides
Epoxy resins
Extinguishing
Flame retardants
Fourier transform infrared spectroscopy
Fourier transforms
heat
Heat release rate
Infrared analysis
Infrared spectroscopy
Intrinsic flame-retardant
Mechanical properties
Methylene dianiline
nitrogen
Phosphorus
Phosphorus-nitrogen combination
Polymers
Raman spectroscopy
Resins
scanning electron microscopy
smoke
Title A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism
URI https://dx.doi.org/10.1016/j.polymdegradstab.2020.109151
https://www.proquest.com/docview/2440490624
https://www.proquest.com/docview/2431844615
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KC348FK1Kz9aygr65Xj42yUX60OO0nIqtoIW-LfsVjPSSI7mD3ot_gn-zM5dNWwtCwYcEkp0sy87szIT9zW8BXsXOuEA71EBRJFxoF3CFzpLbkI6YjDMTOipO_nKSTs_Ep_PkfAMmfS0MwSq97-98-tpb-zdDP5vDeVkOCZaE6UtIW2nrRIIq2EVGVv721zXMg_hTOhhjyEn6Hry-xnjN64vVzBIrg22pQiHCzohgKUzCf8WpWx57HYaOH8G2zx_ZuBviY9hw1Q7cn_THtu3AwxsMg0_g95i9P_16yilYWTb_Ubd4NcuW40puajQeVqBJOEaow8biLDNd1l4aU_PLFba0JUo19YzZkgBhRCTMlCntO_ZtVWH-2Jbtm64bfqMbX_7PVGXZzFF9cdnOnsLZ8Yfvkyn3RzBwE-digXeqsFRCmDyJiwxXfyGUVaNEBzazUZwanUfByAZKBKbIrVZJrgxx3LkstyMRP4PNqq7cLjDMLVJdBHlU2AyzNqMEYQfTSGfRyLksHcBhP-HSeH5yOibjQvZAtJ_ylr4k6Ut2-hpAevX5vCPquOuHR7125V-WJzGo3LWL_d4qpHcBrYyIeZFYoMUAXl41ozHQjoyqXL0kGXSp-EMeJs__fxR78ICeOhzbPmwumqV7gRnTQh-sl8QBbI0_fp6e_AHFCxrC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_qFWx9KFqVnlZdQd8Ml49NcpE-eJyWq22vgi30bdmvYKSXHMkdeP-Ef7Mzl01bC0LBh-Qh-8GyM_ubCTvzG4B3kdXWVxYlkOexx5X1PYlg6ZmASkxGqQ4sJSefTpPJBf96GV9uwLjLhaGwSof9Laav0dp9GbjdHMyLYkBhSei-BHSVtnYkHsAmsVPFPdgcHR1PpjeAzOO2LCGugQY8hPc3YV7z6mo1M0TMYBpKUghxPuJYCuLgX6bqDmivLdHhY9hxLiQbtat8Ahu23IWtcVe5bRce3SIZfAq_R-zz2bczj-yVYfMfVYNPvWw8PMx1hfrDctQKyyjwsDa40UwVleuN3vmvFbY0BfaqqxkzBcWEEZcwk7owH9n3VYkuZFM0H9ppvFvTOAYAJkvDZpZSjItm9gwuDr-cjyeeq8Lg6SjjC3xTkqXkXGdxlKcIADmXRg5j5ZvUhFGiVRb6Q-NL7us8M0rGmdREc2fTzAx59Bx6ZVXaPWDoXiQq97MwNyk6blpyCh9MQpWGQ2vTpA8H3YYL7SjKqVLGlehi0X6KO_ISJC_RyqsPyfXwecvVcd-Bnzrpir-UT6Bdue8U-51WCIcCjQiJfJGIoHkf3l43ozLQpYwsbbWkPoiq-E8exC_-fxVvYGtyfnoiTo6mxy9hm1rasLZ96C3qpX2FDtRCvXYH5A9YhB1z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+DOPO-based+phosphorus-nitrogen+flame+retardant+bio-based+epoxy+resin+from+diphenolic+acid%3A+Synthesis%2C+flame-retardant+behavior+and+mechanism&rft.jtitle=Polymer+degradation+and+stability&rft.au=Chi%2C+Zhiyuan&rft.au=Guo%2C+Zongwei&rft.au=Xu%2C+Zice&rft.au=Zhang%2C+Mengjie&rft.date=2020-06-01&rft.pub=Elsevier+Ltd&rft.issn=0141-3910&rft.eissn=1873-2321&rft.volume=176&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2020.109151&rft.externalDocID=S0141391020300835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon