A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism
Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid th...
Saved in:
Published in | Polymer degradation and stability Vol. 176; p. 109151 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.06.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid thermosets is still a challenge to synthesize high performance intrinsic flame-retardant bio-based epoxy resins. A flame-retardant bio-based epoxy resin (TEBA) was designed and synthesized via a three-step synthetic pathway from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)、diethanolamine and diphenolic acid (DPA). The chemical structures of the intermediate and final products were confirmed by 1HNMR and FTIR spectroscopy. TEBA cured with 4,4′-diaminodiphenylmethane (DDM) curing agent was compared with a standard bisphenol A epoxy resin (DGEBA). Due to the combination of phosphorus and nitrogen in the main chain, the TEBA-DDM shows superior flame retardancy. Compared with DGEBA-DDM, LOI of TEBA-DDM increased from 25.8% to 42.3%, UL-94 test rating from no rating to V-0 rating, self-extinguishing within 3s. The peak heat release rate (PHRR) in the cone calorimetry test decreased by 67%. total heat release (THR) and total smoke generation (TSP) decreased by 27% and 35%, respectively. In addition, the flame retardant mechanism of TEBA epoxy thermosets was researched by FTIR, residual char photograph, SEM, TG-IR analysis and Raman spectroscopy. Meanwhile, TEBA-DDM and DGEBA-DDM have comparable mechanical properties.
•The main raw materials come from bio-based, which saves fossil resources.•Direct synthesis of intrinsic flame retardant resins, unlike additive and co-curing formulations.•Design of phosphorus-nitrogen combination flame retardant structure, excellent flame retardancy.•A comprehensive and detailed discussion of the flame retardant mechanism. |
---|---|
AbstractList | Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid thermosets is still a challenge to synthesize high performance intrinsic flame-retardant bio-based epoxy resins. A flame-retardant bio-based epoxy resin (TEBA) was designed and synthesized via a three-step synthetic pathway from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)、diethanolamine and diphenolic acid (DPA). The chemical structures of the intermediate and final products were confirmed by ¹HNMR and FTIR spectroscopy. TEBA cured with 4,4′-diaminodiphenylmethane (DDM) curing agent was compared with a standard bisphenol A epoxy resin (DGEBA). Due to the combination of phosphorus and nitrogen in the main chain, the TEBA-DDM shows superior flame retardancy. Compared with DGEBA-DDM, LOI of TEBA-DDM increased from 25.8% to 42.3%, UL-94 test rating from no rating to V-0 rating, self-extinguishing within 3s. The peak heat release rate (PHRR) in the cone calorimetry test decreased by 67%. total heat release (THR) and total smoke generation (TSP) decreased by 27% and 35%, respectively. In addition, the flame retardant mechanism of TEBA epoxy thermosets was researched by FTIR, residual char photograph, SEM, TG-IR analysis and Raman spectroscopy. Meanwhile, TEBA-DDM and DGEBA-DDM have comparable mechanical properties. Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid thermosets is still a challenge to synthesize high performance intrinsic flame-retardant bio-based epoxy resins. A flame-retardant bio-based epoxy resin (TEBA) was designed and synthesized via a three-step synthetic pathway from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)、diethanolamine and diphenolic acid (DPA). The chemical structures of the intermediate and final products were confirmed by 1HNMR and FTIR spectroscopy. TEBA cured with 4,4′-diaminodiphenylmethane (DDM) curing agent was compared with a standard bisphenol A epoxy resin (DGEBA). Due to the combination of phosphorus and nitrogen in the main chain, the TEBA-DDM shows superior flame retardancy. Compared with DGEBA-DDM, LOI of TEBA-DDM increased from 25.8% to 42.3%, UL-94 test rating from no rating to V-0 rating, self-extinguishing within 3s. The peak heat release rate (PHRR) in the cone calorimetry test decreased by 67%. total heat release (THR) and total smoke generation (TSP) decreased by 27% and 35%, respectively. In addition, the flame retardant mechanism of TEBA epoxy thermosets was researched by FTIR, residual char photograph, SEM, TG-IR analysis and Raman spectroscopy. Meanwhile, TEBA-DDM and DGEBA-DDM have comparable mechanical properties. •The main raw materials come from bio-based, which saves fossil resources.•Direct synthesis of intrinsic flame retardant resins, unlike additive and co-curing formulations.•Design of phosphorus-nitrogen combination flame retardant structure, excellent flame retardancy.•A comprehensive and detailed discussion of the flame retardant mechanism. Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid thermosets is still a challenge to synthesize high performance intrinsic flame-retardant bio-based epoxy resins. A flame-retardant bio-based epoxy resin (TEBA) was designed and synthesized via a three-step synthetic pathway from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)、diethanolamine and diphenolic acid (DPA). The chemical structures of the intermediate and final products were confirmed by 1HNMR and FTIR spectroscopy. TEBA cured with 4,4′-diaminodiphenylmethane (DDM) curing agent was compared with a standard bisphenol A epoxy resin (DGEBA). Due to the combination of phosphorus and nitrogen in the main chain, the TEBA-DDM shows superior flame retardancy. Compared with DGEBA-DDM, LOI of TEBA-DDM increased from 25.8% to 42.3%, UL-94 test rating from no rating to V-0 rating, self-extinguishing within 3s. The peak heat release rate (PHRR) in the cone calorimetry test decreased by 67%. total heat release (THR) and total smoke generation (TSP) decreased by 27% and 35%, respectively. In addition, the flame retardant mechanism of TEBA epoxy thermosets was researched by FTIR, residual char photograph, SEM, TG-IR analysis and Raman spectroscopy. Meanwhile, TEBA-DDM and DGEBA-DDM have comparable mechanical properties. |
ArticleNumber | 109151 |
Author | Zhang, Mengjie Xu, Zice Li, Ming Ao, Yuhui Chi, Zhiyuan Guo, Zongwei Shang, Lei |
Author_xml | – sequence: 1 givenname: Zhiyuan surname: Chi fullname: Chi, Zhiyuan – sequence: 2 givenname: Zongwei surname: Guo fullname: Guo, Zongwei – sequence: 3 givenname: Zice surname: Xu fullname: Xu, Zice – sequence: 4 givenname: Mengjie surname: Zhang fullname: Zhang, Mengjie – sequence: 5 givenname: Ming surname: Li fullname: Li, Ming – sequence: 6 givenname: Lei surname: Shang fullname: Shang, Lei email: shanglei@ccut.edu.cn – sequence: 7 givenname: Yuhui surname: Ao fullname: Ao, Yuhui email: aoyuhui@ccut.edu.cn |
BookMark | eNqNkV1rFDEUhgep4Lb6HwIieOGs-ZovwYuy2lYorKBehzPJmW6WmWRMssX9E_5ms0wvZK8aSHLxPuch5L0sLpx3WBTvGF0zyuqP-_Xsx-Nk8CGAiQn6Naf8lHWsYi-KFWsbUXLB2UWxokyyUnSMviouY9zTvGTFVsXfa_Jl-31b9hDRkHnnY97hEEtnU_AP6MgwwoQkYIJgwCXSW_9E4-z_HHMSbaaCn4ix8w6dH60moK35RH4cXdrlPH5YNOV_GtzBo_WBgDNkQr0DZ-P0ung5wBjxzdN9Vfy6-fpzc1feb2-_ba7vSy06mfLJ20qClLqrxNAIzgcJBtqqp6YxXNS67zhtDQVJ9dCZHqoOdC2qBpvOtFJcFe8X7xz87wPGpCYbNY4jOPSHqLgUrJWyZlVG356he38ILr8uU5LKjtb8JPy8UDr4GAMOag52gnBUjKpTW2qvztpSp7bU0lae35zNa5sgWe9SADs-23K7WDD_3aPFoKK26DQaG1AnZbx9pukfvBXCXw |
CitedBy_id | crossref_primary_10_1002_app_56078 crossref_primary_10_1016_j_polymdegradstab_2022_109976 crossref_primary_10_1016_j_jaap_2023_106222 crossref_primary_10_1002_mame_202200550 crossref_primary_10_1016_j_compositesb_2024_111831 crossref_primary_10_1021_acsapm_4c00338 crossref_primary_10_1016_j_porgcoat_2023_107862 crossref_primary_10_3390_molecules29153708 crossref_primary_10_3390_polym14235279 crossref_primary_10_1007_s10973_023_12363_2 crossref_primary_10_1021_acs_iecr_4c02270 crossref_primary_10_1002_pen_26471 crossref_primary_10_1002_app_52036 crossref_primary_10_1016_j_polymdegradstab_2022_109989 crossref_primary_10_1016_j_cclet_2021_12_067 crossref_primary_10_1002_mame_202200565 crossref_primary_10_1016_j_coco_2021_100754 crossref_primary_10_1016_j_compositesa_2021_106771 crossref_primary_10_1016_j_jcis_2022_06_075 crossref_primary_10_1016_j_eurpolymj_2024_113605 crossref_primary_10_1016_j_cej_2022_140547 crossref_primary_10_3390_molecules28237885 crossref_primary_10_1007_s42823_022_00440_9 crossref_primary_10_1016_j_polymdegradstab_2024_110705 crossref_primary_10_1002_pi_6673 crossref_primary_10_1016_j_apsusc_2024_159565 crossref_primary_10_1177_09540083241227589 crossref_primary_10_1016_j_eurpolymj_2024_112845 crossref_primary_10_1002_app_53708 crossref_primary_10_1016_j_polymdegradstab_2022_110190 crossref_primary_10_1002_app_50792 crossref_primary_10_1016_j_seppur_2023_126148 crossref_primary_10_3390_molecules28020623 crossref_primary_10_1016_j_polymdegradstab_2023_110595 crossref_primary_10_1016_j_reactfunctpolym_2024_105854 crossref_primary_10_3390_molecules28114287 crossref_primary_10_1016_j_polymdegradstab_2024_110818 crossref_primary_10_1016_j_polymer_2023_126474 crossref_primary_10_1007_s10853_021_06384_1 crossref_primary_10_1021_acsapm_3c01574 crossref_primary_10_1007_s00289_024_05535_z crossref_primary_10_1039_D4RA00166D crossref_primary_10_1016_j_tca_2020_178722 crossref_primary_10_1002_app_56547 crossref_primary_10_1016_j_cej_2024_149212 crossref_primary_10_3390_molecules29184428 crossref_primary_10_1007_s10853_022_07399_y crossref_primary_10_1016_j_polymertesting_2021_107284 crossref_primary_10_3390_coatings15040376 crossref_primary_10_3390_fire8020063 crossref_primary_10_2478_pjct_2023_0015 crossref_primary_10_3390_coatings13101663 crossref_primary_10_1002_app_56678 crossref_primary_10_1016_j_compositesa_2022_106837 crossref_primary_10_1016_j_reactfunctpolym_2020_104743 crossref_primary_10_1016_j_compositesb_2022_109701 crossref_primary_10_1016_j_polymdegradstab_2020_109426 crossref_primary_10_1016_j_aiepr_2022_07_003 crossref_primary_10_3390_molecules29010227 crossref_primary_10_3390_polym16050631 crossref_primary_10_1016_j_cej_2021_131226 crossref_primary_10_1007_s10973_024_13982_z crossref_primary_10_1016_j_cej_2023_141775 crossref_primary_10_1016_j_progpolymsci_2020_101287 crossref_primary_10_1016_j_polymer_2021_123460 crossref_primary_10_1016_j_compositesb_2021_109043 crossref_primary_10_1002_pol_20210774 crossref_primary_10_1016_j_eurpolymj_2021_110904 crossref_primary_10_1007_s11705_021_2042_1 crossref_primary_10_1016_j_compositesa_2021_106726 crossref_primary_10_1007_s10965_022_03161_9 crossref_primary_10_3390_polym16233374 crossref_primary_10_1002_mame_202200408 crossref_primary_10_1007_s11998_022_00685_z crossref_primary_10_1002_app_55242 crossref_primary_10_1002_app_52771 crossref_primary_10_1021_acsapm_5c00255 crossref_primary_10_1038_s41598_021_96927_y crossref_primary_10_1002_pol_20240013 crossref_primary_10_1007_s00107_023_01977_w crossref_primary_10_1007_s10904_021_01942_1 crossref_primary_10_1002_app_51688 crossref_primary_10_1016_j_porgcoat_2020_105850 crossref_primary_10_1016_j_jiec_2025_01_040 crossref_primary_10_1016_j_compscitech_2022_109776 crossref_primary_10_1007_s10904_021_02153_4 crossref_primary_10_1002_app_52896 crossref_primary_10_1016_j_jaap_2025_107029 crossref_primary_10_3390_polym16233343 crossref_primary_10_1002_app_54285 crossref_primary_10_1002_app_56582 crossref_primary_10_1016_j_progpolymsci_2021_101366 crossref_primary_10_1039_D0GC03451G crossref_primary_10_1021_acssuschemeng_0c06665 crossref_primary_10_1021_acsapm_4c00822 crossref_primary_10_1021_acsapm_3c01928 crossref_primary_10_3390_polym15071655 crossref_primary_10_1002_app_54608 crossref_primary_10_1021_acsomega_1c00076 crossref_primary_10_1080_09276440_2020_1816068 crossref_primary_10_1016_j_cej_2025_161023 crossref_primary_10_1016_j_polymdegradstab_2025_111294 crossref_primary_10_1002_app_52426 crossref_primary_10_1002_app_53636 crossref_primary_10_1007_s10965_023_03447_6 crossref_primary_10_1016_j_polymdegradstab_2022_110206 crossref_primary_10_1016_j_compositesb_2024_111675 crossref_primary_10_1007_s10118_022_2779_0 crossref_primary_10_1021_acsapm_1c01792 crossref_primary_10_1016_j_colsurfa_2024_134195 crossref_primary_10_1016_j_matchemphys_2020_123222 crossref_primary_10_1016_j_ijbiomac_2024_129363 crossref_primary_10_1016_j_mtcomm_2024_109421 crossref_primary_10_1002_app_56359 crossref_primary_10_1016_j_lwt_2024_117069 crossref_primary_10_3390_polym15173521 crossref_primary_10_1016_j_colsurfa_2023_132834 crossref_primary_10_1080_10426507_2021_2012472 crossref_primary_10_1080_17480272_2022_2124384 crossref_primary_10_1007_s13726_022_01052_w crossref_primary_10_1016_j_cej_2023_147715 crossref_primary_10_1016_j_compscitech_2023_110422 crossref_primary_10_1016_j_ijbiomac_2024_138182 crossref_primary_10_1021_acsami_1c19727 crossref_primary_10_1016_j_porgcoat_2022_107054 crossref_primary_10_1002_app_51593 crossref_primary_10_1016_j_ijbiomac_2024_139278 crossref_primary_10_1016_j_firesaf_2021_103472 crossref_primary_10_1007_s10965_023_03580_2 crossref_primary_10_1016_j_ijbiomac_2024_137889 crossref_primary_10_1051_e3sconf_202129301022 crossref_primary_10_1002_mame_202200259 crossref_primary_10_1080_00150193_2023_2198961 crossref_primary_10_1016_j_cej_2024_148998 crossref_primary_10_3390_polym16070871 crossref_primary_10_1016_j_compositesa_2022_107392 crossref_primary_10_1021_acs_jpca_4c01947 crossref_primary_10_1002_pol_20210328 crossref_primary_10_1016_j_polymdegradstab_2022_109909 crossref_primary_10_1002_app_50839 crossref_primary_10_1016_j_compositesb_2022_110493 crossref_primary_10_1016_j_mtcomm_2024_110325 crossref_primary_10_1177_09540083241280706 crossref_primary_10_1016_j_polymdegradstab_2021_109629 crossref_primary_10_1002_app_52342 crossref_primary_10_1002_app_53552 crossref_primary_10_1016_j_polymdegradstab_2021_109749 crossref_primary_10_1002_pat_6481 crossref_primary_10_1016_j_porgcoat_2024_108927 crossref_primary_10_1021_acs_iecr_3c01380 crossref_primary_10_1002_app_52224 crossref_primary_10_1021_acsapm_2c01863 crossref_primary_10_1002_app_53556 crossref_primary_10_32604_jrm_2022_019372 crossref_primary_10_1016_j_polymdegradstab_2024_111078 crossref_primary_10_1016_j_colsurfa_2023_132815 crossref_primary_10_1002_app_54890 crossref_primary_10_1016_j_compositesa_2024_108622 crossref_primary_10_1016_j_polymdegradstab_2022_109937 crossref_primary_10_1016_j_cej_2022_135022 crossref_primary_10_1016_j_jaap_2025_107081 crossref_primary_10_1002_cctc_202100032 crossref_primary_10_1016_j_eurpolymj_2021_110638 crossref_primary_10_1002_app_55623 crossref_primary_10_1016_j_polymdegradstab_2023_110410 crossref_primary_10_1002_pat_5616 crossref_primary_10_1016_j_polymdegradstab_2024_110890 crossref_primary_10_1016_j_polymdegradstab_2024_111066 crossref_primary_10_1016_j_mtchem_2024_102015 crossref_primary_10_1016_j_porgcoat_2022_107095 crossref_primary_10_1021_acssuschemeng_0c08302 crossref_primary_10_1002_app_55074 crossref_primary_10_1016_j_cej_2024_148867 crossref_primary_10_1016_j_mtchem_2024_102252 crossref_primary_10_1007_s00289_022_04570_y crossref_primary_10_1055_a_2148_9433 crossref_primary_10_1021_acssuschemeng_1c02434 crossref_primary_10_1039_D3MA01074K crossref_primary_10_1007_s13233_020_8102_4 crossref_primary_10_1016_j_indcrop_2022_115445 crossref_primary_10_1016_j_jmst_2024_02_006 crossref_primary_10_3389_fmats_2022_851754 crossref_primary_10_1016_j_cej_2022_138424 crossref_primary_10_1016_j_reactfunctpolym_2024_106011 crossref_primary_10_1016_j_jechem_2021_05_027 crossref_primary_10_1007_s10973_021_10592_x crossref_primary_10_1016_j_eurpolymj_2022_111594 crossref_primary_10_1016_j_polymdegradstab_2024_110988 crossref_primary_10_1007_s10570_021_04159_0 crossref_primary_10_1021_acsomega_2c01545 crossref_primary_10_1016_j_reactfunctpolym_2023_105530 crossref_primary_10_1021_acs_iecr_3c01906 crossref_primary_10_1016_j_cej_2024_152785 crossref_primary_10_1007_s11814_021_0744_1 crossref_primary_10_1016_j_cej_2022_137906 crossref_primary_10_1002_app_56739 crossref_primary_10_1016_j_porgcoat_2024_108562 crossref_primary_10_1016_j_polymdegradstab_2021_109548 crossref_primary_10_1016_j_porgcoat_2024_108565 crossref_primary_10_1002_app_54680 crossref_primary_10_1016_j_colsurfa_2022_129789 crossref_primary_10_1016_j_eurpolymj_2022_111488 crossref_primary_10_1016_j_polymdegradstab_2024_110856 crossref_primary_10_1016_j_eurpolymj_2024_112937 crossref_primary_10_1016_j_porgcoat_2022_107316 crossref_primary_10_1016_j_polymdegradstab_2022_109841 crossref_primary_10_1016_j_polymdegradstab_2022_109962 crossref_primary_10_1002_pen_26877 crossref_primary_10_1016_j_polymdegradstab_2022_109840 crossref_primary_10_1002_pen_26755 crossref_primary_10_1002_app_51973 crossref_primary_10_1016_j_jtice_2025_106064 crossref_primary_10_1016_j_porgcoat_2025_109163 crossref_primary_10_1016_j_polymdegradstab_2022_110020 crossref_primary_10_1016_j_cej_2023_146241 crossref_primary_10_1002_pc_26776 |
Cites_doi | 10.1016/j.eurpolymj.2015.03.048 10.1016/j.polymdegradstab.2018.09.001 10.1007/s10973-016-5456-0 10.1016/j.tca.2014.11.031 10.1021/acssuschemeng.7b02292 10.1016/j.polymdegradstab.2015.10.012 10.1016/j.polymdegradstab.2004.02.019 10.1039/C6RA06742E 10.1016/j.jhazmat.2019.03.045 10.1016/j.compositesb.2019.03.017 10.1021/am300843c 10.1016/j.polymdegradstab.2018.06.015 10.1039/C7GC02322G 10.1039/C6TC03932D 10.1002/(SICI)1097-4628(19990718)73:3<353::AID-APP6>3.0.CO;2-V 10.1016/j.matchemphys.2013.11.029 10.1002/pat.1859 10.1039/C2GC36630D 10.1039/C5TA07115A 10.1016/j.indcrop.2016.07.020 10.1039/C2GC36715G 10.1021/acs.macromol.7b00097 10.1039/C4PY00514G 10.1016/j.polymdegradstab.2004.01.027 10.1002/fam.949 10.1002/ejlt.201300193 10.1016/j.polymdegradstab.2018.03.006 10.1016/j.eurpolymj.2017.05.007 10.1016/j.polymdegradstab.2016.08.013 10.1038/s41467-019-10178-0 10.1016/j.polymdegradstab.2015.04.023 10.1016/j.polymdegradstab.2018.12.007 10.1039/C5TA02939B 10.1002/mame.201000242 10.1016/j.polymdegradstab.2008.02.011 10.1016/j.jhazmat.2019.120793 10.1021/acs.biomac.5b00014 10.1021/acs.iecr.5b00315 10.1016/j.jiec.2015.03.026 10.1016/j.polymdegradstab.2015.11.018 10.1007/s11426-013-5025-3 10.1039/C4PY01724B 10.1002/mame.200700287 10.1016/j.polymdegradstab.2014.12.014 10.1021/acssuschemeng.8b00439 10.1016/j.polymdegradstab.2017.01.014 10.1021/acssuschemeng.9b02629 10.1016/j.polymdegradstab.2015.10.009 10.1039/c2ra20739g 10.1021/acs.macromol.7b01068 10.1016/j.polymdegradstab.2014.07.020 10.1021/acs.macromol.8b02090 10.1016/j.polymdegradstab.2016.07.013 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jun 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2020 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.polymdegradstab.2020.109151 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2321 |
ExternalDocumentID | 10_1016_j_polymdegradstab_2020_109151 S0141391020300835 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSK SSM SSZ T5K WH7 WUQ XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8FD EFKBS JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c394t-c32854a44c953f7322f4ada85b0d7d236cb9208d0a40cf9dba59ac6357e79d843 |
IEDL.DBID | .~1 |
ISSN | 0141-3910 |
IngestDate | Fri Jul 11 09:42:56 EDT 2025 Fri Jul 25 06:40:29 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Tue Jul 01 02:29:50 EDT 2025 Fri Feb 23 02:46:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanical properties Phosphorus-nitrogen combination Intrinsic flame-retardant Bio-based epoxy resin |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-c32854a44c953f7322f4ada85b0d7d236cb9208d0a40cf9dba59ac6357e79d843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2440490624 |
PQPubID | 2045418 |
ParticipantIDs | proquest_miscellaneous_2431844615 proquest_journals_2440490624 crossref_primary_10_1016_j_polymdegradstab_2020_109151 crossref_citationtrail_10_1016_j_polymdegradstab_2020_109151 elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2020_109151 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Polymer degradation and stability |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Toldy, Szabó, Novák, Madarász, Tóth, Marosi (bib22) 2008; 93 Gao, Zheng, Nie, Wang (bib43) 2016; 127 Huo, Wang, Yang, Wang, Zhang, Zhang, Chen, Tang (bib49) 2016; 131 Wang, Cai (bib36) 2017; 137 Ma, Liu, Jiang, Fan, Feng, Zhu (bib13) 2013; 57 Liu, Zhao, Tan, Chen, Wang (bib54) 2015; 122 Salmeia, Gaan (bib31) 2015; 113 Ecochard, Decostanzi, Negrell, Sonnier, Caillol (bib8) 2019 Xu, Wirasaputra, Liu, Yuan, Zhao (bib50) 2015; 122 Ma, Liu, Jiang, Tang, Zhang, Zhu (bib14) 2013; 15 Wang, Shieh (bib37) 1999; 73 Pourchet, Sonnier, Ben-Abdelkader, Gaillard, Ruiz, Placet, Plasseraud, Boni (bib7) 2019; 7 Liu, Zeng, Deng, Liao, Pang, Guo (bib19) 2013; 15 Mauerer (bib23) 2005; 88 Jian, An, Li, Chen, Wang, Zeng (bib9) 2017; 50 Feng, East, Hammond, Zhang, Jaffe (bib18) 2011; 22 Maiorana, Spinella, Gross (bib20) 2015; 16 Xu, Xu, Leng, Li (bib34) 2016; 123 Ferdosian, Yuan, Anderson, Xu (bib44) 2016; 91 Jing, Zhang, Tang, Fang (bib21) 2016; 6 Schmidt, Ciesielski, Greiner, Döring (bib29) 2018; 158 Zhao, Liang, Wang, Li, Liu (bib27) 2016; 133 Schartel, Hull (bib46) 2007; 31 Fu, Wang, Xing, Zhang, Song, Hu (bib47) 2018; 151 Wu, Luo, Cernetic, Chen, Chiang, Jen (bib4) 2016; 4 Tao, Duan, Dong, Wang, Yang (bib33) 2018; 154 Levchik, Piotrowski, Weil, Yao (bib24) 2005; 88 Artner, Ciesielski, Walter, Döring, Perez, Sandler, Altstädt, Schartel (bib35) 2008; 293 Jiang, Sun, Zhang, Liu, Ru, Zhang, Zhao (bib11) 2019; 160 Liu, Tang, Wang, Wu (bib45) 2012; 2 Jaillet, Darroman, Ratsimihety, Auvergne, Boutevin, Caillol (bib16) 2014; 116 Xu, Xu, Li (bib41) 2014; 109 Faye, Decostanzi, Ecochard, Caillol (bib10) 2017; 19 Dai, Peng, Teng, Liu, Liu, Shen, Mahmud, Zhu, Liu (bib3) 2018; 6 Perret, Schartel, Stöß, Ciesielski, Diederichs, Döring, Krämer, Altstädt (bib32) 2011; 296 Qi, Wang, Kou, Pang, Zhang, Li, Liu, Weng, Jian (bib39) 2019; 10 Hu, Yang, Jiang, He, Liu, Huang, Wan (bib2) 2019; 379 Liu, Xu, Xu, Li, Hu, Li (bib28) 2019; 167 Jian, Ai, Xia, Zhao, Zhao (bib48) 2019; 371 Wan, Gan, Li, Molina-Aldareguia, Wang (bib5) 2015; 3 Shibata, Ohkita (bib6) 2017; 92 Nguyen, Livi, Soares, Barra, Gérard, Duchet-Rumeau (bib15) 2017; 5 Qian, Song, Bihe, Yu, Shi, Hu, Yuen (bib51) 2014; 143 Zhao, Liu, Peng, Liao, Wang (bib52) 2015; 118 Hong, Radojčić, Ionescu, Petrović, Eastwood (bib17) 2014; 5 Liu, Chen, Yuan, Song, Chang, Chen, Xu, Dai (bib38) 2016; 4 Fache, Viola, Auvergne, Boutevin, Caillol (bib12) 2015; 68 Kasemsiri, Neramittagapong, Chindaprasirt (bib40) 2015; 600 Sun, Wang, Wu (bib42) 2012; 4 Qiu, Qian, Feng, Jin, Hao (bib53) 2018; 51 Chao, Li, Gu, Han, Jia, Wang, Zhou, Wang (bib26) 2015; 6 You, Cheng, Tang, He (bib30) 2015; 54 Jin, Li, Park (bib1) 2015; 29 Wang, Ma, Xu, Liu, Dai, Wang, Liu, Chen, Shen, Wei, Zhu (bib25) 2017; 50 Wan (10.1016/j.polymdegradstab.2020.109151_bib5) 2015; 3 Xu (10.1016/j.polymdegradstab.2020.109151_bib34) 2016; 123 Liu (10.1016/j.polymdegradstab.2020.109151_bib38) 2016; 4 Ferdosian (10.1016/j.polymdegradstab.2020.109151_bib44) 2016; 91 Hong (10.1016/j.polymdegradstab.2020.109151_bib17) 2014; 5 Wang (10.1016/j.polymdegradstab.2020.109151_bib36) 2017; 137 Jiang (10.1016/j.polymdegradstab.2020.109151_bib11) 2019; 160 Schmidt (10.1016/j.polymdegradstab.2020.109151_bib29) 2018; 158 Perret (10.1016/j.polymdegradstab.2020.109151_bib32) 2011; 296 Fache (10.1016/j.polymdegradstab.2020.109151_bib12) 2015; 68 Salmeia (10.1016/j.polymdegradstab.2020.109151_bib31) 2015; 113 Qi (10.1016/j.polymdegradstab.2020.109151_bib39) 2019; 10 Xu (10.1016/j.polymdegradstab.2020.109151_bib41) 2014; 109 Maiorana (10.1016/j.polymdegradstab.2020.109151_bib20) 2015; 16 Qian (10.1016/j.polymdegradstab.2020.109151_bib51) 2014; 143 Hu (10.1016/j.polymdegradstab.2020.109151_bib2) 2019; 379 Ecochard (10.1016/j.polymdegradstab.2020.109151_bib8) 2019 Kasemsiri (10.1016/j.polymdegradstab.2020.109151_bib40) 2015; 600 Mauerer (10.1016/j.polymdegradstab.2020.109151_bib23) 2005; 88 Zhao (10.1016/j.polymdegradstab.2020.109151_bib27) 2016; 133 Qiu (10.1016/j.polymdegradstab.2020.109151_bib53) 2018; 51 Ma (10.1016/j.polymdegradstab.2020.109151_bib14) 2013; 15 Xu (10.1016/j.polymdegradstab.2020.109151_bib50) 2015; 122 Wang (10.1016/j.polymdegradstab.2020.109151_bib25) 2017; 50 Shibata (10.1016/j.polymdegradstab.2020.109151_bib6) 2017; 92 Toldy (10.1016/j.polymdegradstab.2020.109151_bib22) 2008; 93 Liu (10.1016/j.polymdegradstab.2020.109151_bib28) 2019; 167 Jing (10.1016/j.polymdegradstab.2020.109151_bib21) 2016; 6 Zhao (10.1016/j.polymdegradstab.2020.109151_bib52) 2015; 118 Fu (10.1016/j.polymdegradstab.2020.109151_bib47) 2018; 151 Sun (10.1016/j.polymdegradstab.2020.109151_bib42) 2012; 4 Tao (10.1016/j.polymdegradstab.2020.109151_bib33) 2018; 154 Wang (10.1016/j.polymdegradstab.2020.109151_bib37) 1999; 73 Feng (10.1016/j.polymdegradstab.2020.109151_bib18) 2011; 22 Gao (10.1016/j.polymdegradstab.2020.109151_bib43) 2016; 127 Huo (10.1016/j.polymdegradstab.2020.109151_bib49) 2016; 131 Artner (10.1016/j.polymdegradstab.2020.109151_bib35) 2008; 293 Ma (10.1016/j.polymdegradstab.2020.109151_bib13) 2013; 57 Chao (10.1016/j.polymdegradstab.2020.109151_bib26) 2015; 6 Nguyen (10.1016/j.polymdegradstab.2020.109151_bib15) 2017; 5 Jaillet (10.1016/j.polymdegradstab.2020.109151_bib16) 2014; 116 Liu (10.1016/j.polymdegradstab.2020.109151_bib54) 2015; 122 Faye (10.1016/j.polymdegradstab.2020.109151_bib10) 2017; 19 Pourchet (10.1016/j.polymdegradstab.2020.109151_bib7) 2019; 7 Jian (10.1016/j.polymdegradstab.2020.109151_bib48) 2019; 371 Jin (10.1016/j.polymdegradstab.2020.109151_bib1) 2015; 29 Dai (10.1016/j.polymdegradstab.2020.109151_bib3) 2018; 6 Schartel (10.1016/j.polymdegradstab.2020.109151_bib46) 2007; 31 Jian (10.1016/j.polymdegradstab.2020.109151_bib9) 2017; 50 Wu (10.1016/j.polymdegradstab.2020.109151_bib4) 2016; 4 You (10.1016/j.polymdegradstab.2020.109151_bib30) 2015; 54 Levchik (10.1016/j.polymdegradstab.2020.109151_bib24) 2005; 88 Liu (10.1016/j.polymdegradstab.2020.109151_bib19) 2013; 15 Liu (10.1016/j.polymdegradstab.2020.109151_bib45) 2012; 2 |
References_xml | – volume: 54 start-page: 7309 year: 2015 end-page: 7319 ident: bib30 article-title: Functional group effect on char formation, flame retardancy and mechanical properties of phosphonate–triazine-based compound as flame retardant in epoxy resin publication-title: Ind. Eng. Chem. Res. – volume: 51 start-page: 9992 year: 2018 end-page: 10002 ident: bib53 article-title: Toughening effect and flame-retardant behaviors of phosphaphenanthrene/phenylsiloxane bigroup macromolecules in epoxy thermoset publication-title: Macromolecules – volume: 4 start-page: 10286 year: 2016 end-page: 10292 ident: bib4 article-title: PCBM-doped electro-optic materials: investigation of dielectric, optical and electro-optic properties for highly efficient poling publication-title: J. Mater. Chem. C – volume: 160 start-page: 45 year: 2019 end-page: 52 ident: bib11 article-title: Novel biobased epoxy resin thermosets derived from eugenol and vanillin publication-title: Polym. Degrad. Stabil. – volume: 73 start-page: 353 year: 1999 end-page: 361 ident: bib37 article-title: Phosphorus-containing epoxy resin for an electronic application publication-title: J. Appl. Polym. Sci. – volume: 118 start-page: 120 year: 2015 end-page: 129 ident: bib52 article-title: Synthesis of a novel PEPA-substituted polyphosphoramide with high char residues and its performance as an intumescent flame retardant for epoxy resins publication-title: Polym. Degrad. Stabil. – volume: 10 start-page: 2107 year: 2019 ident: bib39 article-title: Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock publication-title: Nat. Commun. – start-page: 24 year: 2019 ident: bib8 article-title: Cardanol and eugenol based flame retardant epoxy monomers for thermostable networks publication-title: Molecules – volume: 113 start-page: 119 year: 2015 end-page: 134 ident: bib31 article-title: An overview of some recent advances in DOPO-derivatives: chemistry and flame retardant applications publication-title: Polym. Degrad. Stabil. – volume: 88 start-page: 70 year: 2005 end-page: 73 ident: bib23 article-title: New reactive, halogen-free flame retardant system for epoxy resins publication-title: Polym. Degrad. Stabil. – volume: 296 start-page: 14 year: 2011 end-page: 30 ident: bib32 article-title: A new halogen-free flame retardant based on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries publication-title: Macromol. Mater. Eng. – volume: 4 start-page: 4047 year: 2012 end-page: 4061 ident: bib42 article-title: Novel spirocyclic phosphazene-based epoxy resin for halogen-free fire resistance: synthesis, curing behaviors, and flammability characteristics publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 21907 year: 2015 end-page: 21921 ident: bib5 article-title: A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties publication-title: J. Mater. Chem. – volume: 22 start-page: 139 year: 2011 end-page: 150 ident: bib18 article-title: Overview of advances in sugar-based polymers publication-title: Polym. Adv. Technol. – volume: 167 start-page: 422 year: 2019 end-page: 433 ident: bib28 article-title: Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins publication-title: Compos. B Eng. – volume: 7 start-page: 14074 year: 2019 end-page: 14088 ident: bib7 article-title: New reactive isoeugenol based phosphate flame retardant: toward green epoxy resins publication-title: ACS Sustain. Chem. Eng. – volume: 92 start-page: 165 year: 2017 end-page: 173 ident: bib6 article-title: Fully biobased epoxy resin systems composed of a vanillin-derived epoxy resin and renewable phenolic hardeners publication-title: Eur. Polym. J. – volume: 88 start-page: 57 year: 2005 end-page: 62 ident: bib24 article-title: New developments in flame retardancy of epoxy resins publication-title: Polym. Degrad. Stabil. – volume: 31 start-page: 327 year: 2007 end-page: 354 ident: bib46 article-title: Development of fire-retarded materials—interpretation of cone calorimeter data publication-title: Fire Mater. – volume: 158 start-page: 190 year: 2018 end-page: 201 ident: bib29 article-title: Novel organophosphorus flame retardants and their synergistic application in novolac epoxy resin publication-title: Polym. Degrad. Stabil. – volume: 5 start-page: 5360 year: 2014 end-page: 5368 ident: bib17 article-title: Advanced materials from corn: isosorbide-based epoxy resins publication-title: Polym. Chem. – volume: 600 start-page: 20 year: 2015 end-page: 27 ident: bib40 article-title: Curing kinetic, thermal and adhesive properties of epoxy resin cured with cashew nut shell liquid publication-title: Thermochim. Acta – volume: 57 start-page: 379 year: 2013 end-page: 388 ident: bib13 article-title: Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid publication-title: Sci. China Chem. – volume: 50 start-page: 1892 year: 2017 end-page: 1901 ident: bib25 article-title: Vanillin-Derived high-performance flame retardant epoxy resins: facile synthesis and properties publication-title: Macromolecules – volume: 379 start-page: 120793 year: 2019 ident: bib2 article-title: Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen-containing flame retardant and its application in reducing the fire hazard of epoxy resin publication-title: J. Hazard Mater. – volume: 151 start-page: 172 year: 2018 end-page: 180 ident: bib47 article-title: Two-dimensional cardanol-derived zirconium phosphate hybrid as flame retardant and smoke suppressant for epoxy resin publication-title: Polym. Degrad. Stabil. – volume: 137 start-page: 138 year: 2017 end-page: 150 ident: bib36 article-title: Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism publication-title: Polym. Degrad. Stabil. – volume: 123 start-page: 105 year: 2016 end-page: 114 ident: bib34 article-title: Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins publication-title: Polym. Degrad. Stabil. – volume: 4 start-page: 3462 year: 2016 end-page: 3470 ident: bib38 article-title: Modification of epoxy resin through the self-assembly of a surfactant-like multi-element flame retardant publication-title: J. Mater. Chem. – volume: 371 start-page: 529 year: 2019 end-page: 539 ident: bib48 article-title: Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins publication-title: J. Hazard Mater. – volume: 122 start-page: 66 year: 2015 end-page: 76 ident: bib54 article-title: Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: from thermal crosslinking to flame retardance publication-title: Polym. Degrad. Stabil. – volume: 93 start-page: 2007 year: 2008 end-page: 2013 ident: bib22 article-title: Intrinsically flame retardant epoxy resin – fire performance and background – Part II publication-title: Polym. Degrad. Stabil. – volume: 19 start-page: 5236 year: 2017 end-page: 5242 ident: bib10 article-title: Eugenol bio-based epoxy thermosets: from cloves to applied materials publication-title: Green Chem. – volume: 116 start-page: 63 year: 2014 end-page: 73 ident: bib16 article-title: New biobased epoxy materials from cardanol publication-title: Eur. J. Lipid Sci. Technol. – volume: 6 start-page: 49019 year: 2016 end-page: 49027 ident: bib21 article-title: Synthesis of a highly efficient phosphorus-containing flame retardant utilizing plant-derived diphenolic acids and its application in polylactic acid publication-title: RSC Adv. – volume: 2 start-page: 5789 year: 2012 ident: bib45 article-title: Synthesis, characterization and curing properties of a novel cyclolinear phosphazene-based epoxy resin for halogen-free flame retardancy and high performance publication-title: RSC Adv. – volume: 15 start-page: 245 year: 2013 end-page: 254 ident: bib14 article-title: Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers publication-title: Green Chem. – volume: 29 start-page: 1 year: 2015 end-page: 11 ident: bib1 article-title: Synthesis and application of epoxy resins: a review publication-title: J. Ind. Eng. Chem. – volume: 127 start-page: 1419 year: 2016 end-page: 1430 ident: bib43 article-title: Thermal performance, mechanical property and fire behavior of epoxy thermoset based on reactive phosphorus-containing epoxy monomer publication-title: J. Therm. Anal. Calorim. – volume: 68 start-page: 526 year: 2015 end-page: 535 ident: bib12 article-title: Biobased epoxy thermosets from vanillin-derived oligomers publication-title: Eur. Polym. J. – volume: 131 start-page: 106 year: 2016 end-page: 113 ident: bib49 article-title: Synthesis of a novel phosphorus-nitrogen type flame retardant composed of maleimide, triazine-trione, and phosphaphenanthrene and its flame retardant effect on epoxy resin publication-title: Polym. Degrad. Stabil. – volume: 5 start-page: 8429 year: 2017 end-page: 8438 ident: bib15 article-title: Development of sustainable thermosets from cardanol-based epoxy prepolymer and ionic liquids publication-title: ACS Sustain. Chem. Eng. – volume: 143 start-page: 1243 year: 2014 end-page: 1252 ident: bib51 article-title: Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system publication-title: Mater. Chem. Phys. – volume: 133 start-page: 162 year: 2016 end-page: 173 ident: bib27 article-title: Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin publication-title: Polym. Degrad. Stabil. – volume: 91 start-page: 295 year: 2016 end-page: 301 ident: bib44 article-title: Synthesis and characterization of hydrolysis lignin-based epoxy resins publication-title: Ind. Crop. Prod. – volume: 154 start-page: 285 year: 2018 end-page: 294 ident: bib33 article-title: Synthesis of an acrylate constructed by phosphaphenanthrene and triazine-trione and its application in intrinsic flame retardant vinyl ester resin publication-title: Polym. Degrad. Stabil. – volume: 109 start-page: 240 year: 2014 end-page: 248 ident: bib41 article-title: Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance publication-title: Polym. Degrad. Stabil. – volume: 122 start-page: 44 year: 2015 end-page: 51 ident: bib50 article-title: Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent publication-title: Polym. Degrad. Stabil. – volume: 50 start-page: 5729 year: 2017 end-page: 5738 ident: bib9 article-title: All plant oil derived epoxy thermosets with excellent comprehensive properties publication-title: Macromolecules – volume: 293 start-page: 503 year: 2008 end-page: 514 ident: bib35 article-title: A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems publication-title: Macromol. Mater. Eng. – volume: 15 start-page: 81 year: 2013 end-page: 84 ident: bib19 article-title: Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid publication-title: Green Chem. – volume: 6 start-page: 2977 year: 2015 end-page: 2985 ident: bib26 article-title: Novel phosphorus–nitrogen–silicon flame retardants and their application in cycloaliphatic epoxy systems publication-title: Polym. Chem. – volume: 6 start-page: 7589 year: 2018 end-page: 7599 ident: bib3 article-title: High-Performing and Fire-Resistant Biobased Epoxy Resin from Renewable Sources publication-title: ACS Sustain. Chem. Eng. – volume: 16 start-page: 1021 year: 2015 end-page: 1031 ident: bib20 article-title: Bio-based alternative to the diglycidyl ether of bisphenol A with controlled materials properties publication-title: Biomacromolecules – volume: 68 start-page: 526 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109151_bib12 article-title: Biobased epoxy thermosets from vanillin-derived oligomers publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2015.03.048 – volume: 158 start-page: 190 year: 2018 ident: 10.1016/j.polymdegradstab.2020.109151_bib29 article-title: Novel organophosphorus flame retardants and their synergistic application in novolac epoxy resin publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2018.09.001 – volume: 127 start-page: 1419 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109151_bib43 article-title: Thermal performance, mechanical property and fire behavior of epoxy thermoset based on reactive phosphorus-containing epoxy monomer publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-016-5456-0 – volume: 600 start-page: 20 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109151_bib40 article-title: Curing kinetic, thermal and adhesive properties of epoxy resin cured with cashew nut shell liquid publication-title: Thermochim. Acta doi: 10.1016/j.tca.2014.11.031 – volume: 5 start-page: 8429 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109151_bib15 article-title: Development of sustainable thermosets from cardanol-based epoxy prepolymer and ionic liquids publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02292 – volume: 122 start-page: 44 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109151_bib50 article-title: Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2015.10.012 – volume: 88 start-page: 57 year: 2005 ident: 10.1016/j.polymdegradstab.2020.109151_bib24 article-title: New developments in flame retardancy of epoxy resins publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2004.02.019 – volume: 6 start-page: 49019 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109151_bib21 article-title: Synthesis of a highly efficient phosphorus-containing flame retardant utilizing plant-derived diphenolic acids and its application in polylactic acid publication-title: RSC Adv. doi: 10.1039/C6RA06742E – volume: 371 start-page: 529 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109151_bib48 article-title: Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.03.045 – volume: 167 start-page: 422 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109151_bib28 article-title: Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.03.017 – volume: 4 start-page: 4047 year: 2012 ident: 10.1016/j.polymdegradstab.2020.109151_bib42 article-title: Novel spirocyclic phosphazene-based epoxy resin for halogen-free fire resistance: synthesis, curing behaviors, and flammability characteristics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am300843c – volume: 154 start-page: 285 year: 2018 ident: 10.1016/j.polymdegradstab.2020.109151_bib33 article-title: Synthesis of an acrylate constructed by phosphaphenanthrene and triazine-trione and its application in intrinsic flame retardant vinyl ester resin publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2018.06.015 – start-page: 24 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109151_bib8 article-title: Cardanol and eugenol based flame retardant epoxy monomers for thermostable networks publication-title: Molecules – volume: 19 start-page: 5236 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109151_bib10 article-title: Eugenol bio-based epoxy thermosets: from cloves to applied materials publication-title: Green Chem. doi: 10.1039/C7GC02322G – volume: 4 start-page: 10286 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109151_bib4 article-title: PCBM-doped electro-optic materials: investigation of dielectric, optical and electro-optic properties for highly efficient poling publication-title: J. Mater. Chem. C doi: 10.1039/C6TC03932D – volume: 73 start-page: 353 year: 1999 ident: 10.1016/j.polymdegradstab.2020.109151_bib37 article-title: Phosphorus-containing epoxy resin for an electronic application publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19990718)73:3<353::AID-APP6>3.0.CO;2-V – volume: 143 start-page: 1243 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109151_bib51 article-title: Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.11.029 – volume: 22 start-page: 139 year: 2011 ident: 10.1016/j.polymdegradstab.2020.109151_bib18 article-title: Overview of advances in sugar-based polymers publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1859 – volume: 15 start-page: 81 year: 2013 ident: 10.1016/j.polymdegradstab.2020.109151_bib19 article-title: Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid publication-title: Green Chem. doi: 10.1039/C2GC36630D – volume: 4 start-page: 3462 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109151_bib38 article-title: Modification of epoxy resin through the self-assembly of a surfactant-like multi-element flame retardant publication-title: J. Mater. Chem. doi: 10.1039/C5TA07115A – volume: 91 start-page: 295 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109151_bib44 article-title: Synthesis and characterization of hydrolysis lignin-based epoxy resins publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2016.07.020 – volume: 15 start-page: 245 year: 2013 ident: 10.1016/j.polymdegradstab.2020.109151_bib14 article-title: Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers publication-title: Green Chem. doi: 10.1039/C2GC36715G – volume: 50 start-page: 1892 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109151_bib25 article-title: Vanillin-Derived high-performance flame retardant epoxy resins: facile synthesis and properties publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00097 – volume: 5 start-page: 5360 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109151_bib17 article-title: Advanced materials from corn: isosorbide-based epoxy resins publication-title: Polym. Chem. doi: 10.1039/C4PY00514G – volume: 88 start-page: 70 year: 2005 ident: 10.1016/j.polymdegradstab.2020.109151_bib23 article-title: New reactive, halogen-free flame retardant system for epoxy resins publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2004.01.027 – volume: 31 start-page: 327 year: 2007 ident: 10.1016/j.polymdegradstab.2020.109151_bib46 article-title: Development of fire-retarded materials—interpretation of cone calorimeter data publication-title: Fire Mater. doi: 10.1002/fam.949 – volume: 116 start-page: 63 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109151_bib16 article-title: New biobased epoxy materials from cardanol publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.201300193 – volume: 151 start-page: 172 year: 2018 ident: 10.1016/j.polymdegradstab.2020.109151_bib47 article-title: Two-dimensional cardanol-derived zirconium phosphate hybrid as flame retardant and smoke suppressant for epoxy resin publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2018.03.006 – volume: 92 start-page: 165 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109151_bib6 article-title: Fully biobased epoxy resin systems composed of a vanillin-derived epoxy resin and renewable phenolic hardeners publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2017.05.007 – volume: 133 start-page: 162 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109151_bib27 article-title: Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.08.013 – volume: 10 start-page: 2107 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109151_bib39 article-title: Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock publication-title: Nat. Commun. doi: 10.1038/s41467-019-10178-0 – volume: 118 start-page: 120 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109151_bib52 article-title: Synthesis of a novel PEPA-substituted polyphosphoramide with high char residues and its performance as an intumescent flame retardant for epoxy resins publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2015.04.023 – volume: 160 start-page: 45 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109151_bib11 article-title: Novel biobased epoxy resin thermosets derived from eugenol and vanillin publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2018.12.007 – volume: 3 start-page: 21907 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109151_bib5 article-title: A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties publication-title: J. Mater. Chem. doi: 10.1039/C5TA02939B – volume: 296 start-page: 14 year: 2011 ident: 10.1016/j.polymdegradstab.2020.109151_bib32 article-title: A new halogen-free flame retardant based on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201000242 – volume: 93 start-page: 2007 year: 2008 ident: 10.1016/j.polymdegradstab.2020.109151_bib22 article-title: Intrinsically flame retardant epoxy resin – fire performance and background – Part II publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2008.02.011 – volume: 379 start-page: 120793 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109151_bib2 article-title: Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen-containing flame retardant and its application in reducing the fire hazard of epoxy resin publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.120793 – volume: 16 start-page: 1021 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109151_bib20 article-title: Bio-based alternative to the diglycidyl ether of bisphenol A with controlled materials properties publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00014 – volume: 54 start-page: 7309 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109151_bib30 article-title: Functional group effect on char formation, flame retardancy and mechanical properties of phosphonate–triazine-based compound as flame retardant in epoxy resin publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b00315 – volume: 29 start-page: 1 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109151_bib1 article-title: Synthesis and application of epoxy resins: a review publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.03.026 – volume: 123 start-page: 105 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109151_bib34 article-title: Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2015.11.018 – volume: 57 start-page: 379 year: 2013 ident: 10.1016/j.polymdegradstab.2020.109151_bib13 article-title: Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid publication-title: Sci. China Chem. doi: 10.1007/s11426-013-5025-3 – volume: 6 start-page: 2977 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109151_bib26 article-title: Novel phosphorus–nitrogen–silicon flame retardants and their application in cycloaliphatic epoxy systems publication-title: Polym. Chem. doi: 10.1039/C4PY01724B – volume: 293 start-page: 503 year: 2008 ident: 10.1016/j.polymdegradstab.2020.109151_bib35 article-title: A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.200700287 – volume: 113 start-page: 119 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109151_bib31 article-title: An overview of some recent advances in DOPO-derivatives: chemistry and flame retardant applications publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2014.12.014 – volume: 6 start-page: 7589 year: 2018 ident: 10.1016/j.polymdegradstab.2020.109151_bib3 article-title: High-Performing and Fire-Resistant Biobased Epoxy Resin from Renewable Sources publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b00439 – volume: 137 start-page: 138 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109151_bib36 article-title: Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2017.01.014 – volume: 7 start-page: 14074 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109151_bib7 article-title: New reactive isoeugenol based phosphate flame retardant: toward green epoxy resins publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02629 – volume: 122 start-page: 66 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109151_bib54 article-title: Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: from thermal crosslinking to flame retardance publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2015.10.009 – volume: 2 start-page: 5789 year: 2012 ident: 10.1016/j.polymdegradstab.2020.109151_bib45 article-title: Synthesis, characterization and curing properties of a novel cyclolinear phosphazene-based epoxy resin for halogen-free flame retardancy and high performance publication-title: RSC Adv. doi: 10.1039/c2ra20739g – volume: 50 start-page: 5729 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109151_bib9 article-title: All plant oil derived epoxy thermosets with excellent comprehensive properties publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01068 – volume: 109 start-page: 240 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109151_bib41 article-title: Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2014.07.020 – volume: 51 start-page: 9992 year: 2018 ident: 10.1016/j.polymdegradstab.2020.109151_bib53 article-title: Toughening effect and flame-retardant behaviors of phosphaphenanthrene/phenylsiloxane bigroup macromolecules in epoxy thermoset publication-title: Macromolecules doi: 10.1021/acs.macromol.8b02090 – volume: 131 start-page: 106 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109151_bib49 article-title: Synthesis of a novel phosphorus-nitrogen type flame retardant composed of maleimide, triazine-trione, and phosphaphenanthrene and its flame retardant effect on epoxy resin publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.07.013 |
SSID | ssj0000451 |
Score | 2.6570885 |
Snippet | Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109151 |
SubjectTerms | Bio-based epoxy resin Bisphenol A calorimetry chemical structure Chemical synthesis Curing agents Diethanolamine Enthalpy epoxides Epoxy resins Extinguishing Flame retardants Fourier transform infrared spectroscopy Fourier transforms heat Heat release rate Infrared analysis Infrared spectroscopy Intrinsic flame-retardant Mechanical properties Methylene dianiline nitrogen Phosphorus Phosphorus-nitrogen combination Polymers Raman spectroscopy Resins scanning electron microscopy smoke |
Title | A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism |
URI | https://dx.doi.org/10.1016/j.polymdegradstab.2020.109151 https://www.proquest.com/docview/2440490624 https://www.proquest.com/docview/2431844615 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KC348FK1Kz9aygr65Xj42yUX60OO0nIqtoIW-LfsVjPSSI7mD3ot_gn-zM5dNWwtCwYcEkp0sy87szIT9zW8BXsXOuEA71EBRJFxoF3CFzpLbkI6YjDMTOipO_nKSTs_Ep_PkfAMmfS0MwSq97-98-tpb-zdDP5vDeVkOCZaE6UtIW2nrRIIq2EVGVv721zXMg_hTOhhjyEn6Hry-xnjN64vVzBIrg22pQiHCzohgKUzCf8WpWx57HYaOH8G2zx_ZuBviY9hw1Q7cn_THtu3AwxsMg0_g95i9P_16yilYWTb_Ubd4NcuW40puajQeVqBJOEaow8biLDNd1l4aU_PLFba0JUo19YzZkgBhRCTMlCntO_ZtVWH-2Jbtm64bfqMbX_7PVGXZzFF9cdnOnsLZ8Yfvkyn3RzBwE-digXeqsFRCmDyJiwxXfyGUVaNEBzazUZwanUfByAZKBKbIrVZJrgxx3LkstyMRP4PNqq7cLjDMLVJdBHlU2AyzNqMEYQfTSGfRyLksHcBhP-HSeH5yOibjQvZAtJ_ylr4k6Ut2-hpAevX5vCPquOuHR7125V-WJzGo3LWL_d4qpHcBrYyIeZFYoMUAXl41ozHQjoyqXL0kGXSp-EMeJs__fxR78ICeOhzbPmwumqV7gRnTQh-sl8QBbI0_fp6e_AHFCxrC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_qFWx9KFqVnlZdQd8Ml49NcpE-eJyWq22vgi30bdmvYKSXHMkdeP-Ef7Mzl01bC0LBh-Qh-8GyM_ubCTvzG4B3kdXWVxYlkOexx5X1PYlg6ZmASkxGqQ4sJSefTpPJBf96GV9uwLjLhaGwSof9Laav0dp9GbjdHMyLYkBhSei-BHSVtnYkHsAmsVPFPdgcHR1PpjeAzOO2LCGugQY8hPc3YV7z6mo1M0TMYBpKUghxPuJYCuLgX6bqDmivLdHhY9hxLiQbtat8Ahu23IWtcVe5bRce3SIZfAq_R-zz2bczj-yVYfMfVYNPvWw8PMx1hfrDctQKyyjwsDa40UwVleuN3vmvFbY0BfaqqxkzBcWEEZcwk7owH9n3VYkuZFM0H9ppvFvTOAYAJkvDZpZSjItm9gwuDr-cjyeeq8Lg6SjjC3xTkqXkXGdxlKcIADmXRg5j5ZvUhFGiVRb6Q-NL7us8M0rGmdREc2fTzAx59Bx6ZVXaPWDoXiQq97MwNyk6blpyCh9MQpWGQ2vTpA8H3YYL7SjKqVLGlehi0X6KO_ISJC_RyqsPyfXwecvVcd-Bnzrpir-UT6Bdue8U-51WCIcCjQiJfJGIoHkf3l43ozLQpYwsbbWkPoiq-E8exC_-fxVvYGtyfnoiTo6mxy9hm1rasLZ96C3qpX2FDtRCvXYH5A9YhB1z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+DOPO-based+phosphorus-nitrogen+flame+retardant+bio-based+epoxy+resin+from+diphenolic+acid%3A+Synthesis%2C+flame-retardant+behavior+and+mechanism&rft.jtitle=Polymer+degradation+and+stability&rft.au=Chi%2C+Zhiyuan&rft.au=Guo%2C+Zongwei&rft.au=Xu%2C+Zice&rft.au=Zhang%2C+Mengjie&rft.date=2020-06-01&rft.pub=Elsevier+Ltd&rft.issn=0141-3910&rft.eissn=1873-2321&rft.volume=176&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2020.109151&rft.externalDocID=S0141391020300835 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |