A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism

Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid th...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 176; p. 109151
Main Authors Chi, Zhiyuan, Guo, Zongwei, Xu, Zice, Zhang, Mengjie, Li, Ming, Shang, Lei, Ao, Yuhui
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.06.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Searching a renewable and flame-retardant alternative to bisphenol A epoxy resins is a necessary development trend. Diphenolic acid, a plant derivative, has been proven to be one of the sustainable alternatives to bisphenol A. However, how to impart the flame-retardant property to diphenolic acid thermosets is still a challenge to synthesize high performance intrinsic flame-retardant bio-based epoxy resins. A flame-retardant bio-based epoxy resin (TEBA) was designed and synthesized via a three-step synthetic pathway from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)、diethanolamine and diphenolic acid (DPA). The chemical structures of the intermediate and final products were confirmed by 1HNMR and FTIR spectroscopy. TEBA cured with 4,4′-diaminodiphenylmethane (DDM) curing agent was compared with a standard bisphenol A epoxy resin (DGEBA). Due to the combination of phosphorus and nitrogen in the main chain, the TEBA-DDM shows superior flame retardancy. Compared with DGEBA-DDM, LOI of TEBA-DDM increased from 25.8% to 42.3%, UL-94 test rating from no rating to V-0 rating, self-extinguishing within 3s. The peak heat release rate (PHRR) in the cone calorimetry test decreased by 67%. total heat release (THR) and total smoke generation (TSP) decreased by 27% and 35%, respectively. In addition, the flame retardant mechanism of TEBA epoxy thermosets was researched by FTIR, residual char photograph, SEM, TG-IR analysis and Raman spectroscopy. Meanwhile, TEBA-DDM and DGEBA-DDM have comparable mechanical properties. •The main raw materials come from bio-based, which saves fossil resources.•Direct synthesis of intrinsic flame retardant resins, unlike additive and co-curing formulations.•Design of phosphorus-nitrogen combination flame retardant structure, excellent flame retardancy.•A comprehensive and detailed discussion of the flame retardant mechanism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0141-3910
1873-2321
DOI:10.1016/j.polymdegradstab.2020.109151