Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1

Transgenic rice plants co-expressing the Suaeda salsa SsNHX1 (vacuolar membrane Na+/H+ antiporter) and Arabidopsis AVP1 (vacuolar H+-PPase) showed enhanced salt tolerance during 3 d of 300 mM NaCl treatment under outdoor growth conditions. These transgenic rice seedlings also grew better on MS mediu...

Full description

Saved in:
Bibliographic Details
Published inMolecular breeding Vol. 17; no. 4; pp. 341 - 353
Main Authors Zhao, F.Y, Zhang, X.J, Li, P.H, Zhao, Y.X, Zhang, H
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Nature B.V 01.05.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transgenic rice plants co-expressing the Suaeda salsa SsNHX1 (vacuolar membrane Na+/H+ antiporter) and Arabidopsis AVP1 (vacuolar H+-PPase) showed enhanced salt tolerance during 3 d of 300 mM NaCl treatment under outdoor growth conditions. These transgenic rice seedlings also grew better on MS medium containing 150 mM NaCl compared to SsNHX1-transformed lines and non-transformed controls. Measurements on isolated vacuolar membrane vesicles derived from the salt stressed SsNHX1+AVP1-transgenic plants demonstrated that the vesicles had increased V-PPase hydrolytic activity in comparison with the Ss-transgenics and non-transgenics. Moreover the V-PPase activity was closely related to the development period of the SA-transgenic seedlings and markedly higher in 3-week-old seedlings than in 5-week-old seedlings. Statistic analysis indicated that the SA-transgenic rice plants contained relatively more ions with higher K+/Na+ ratio in their shoots compared to the SsNHX1-transformed lines upon salt treatment. Furthermore, these SA-transformants also exhibited relatively higher level of photosynthesis and root proton exportation capacity whereas reduced H2O2 generation in the same plants. In general, these results supported the hypothesis that simultaneous expression of the SsNHX1 and AVP1 conferred greater performance to the transgenic plants than that of the single SsNHX1.
Bibliography:http://dx.doi.org/10.1007/s11032-006-9005-6
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1380-3743
1572-9788
DOI:10.1007/s11032-006-9005-6