Influence of gap distance between bone and plate on structural stiffness and parallel interfragmental movement in far-cortical locking technique - a biomechanical study

Sufficient interfragmental movement is the key to successful fracture healing in the theory of secondary bone healing. The far-cortical locking technique enables both stiffness reduction and parallel motion for ideal callus formation and fracture healing, but the influence of plate-bone gap on the p...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering Vol. 24; no. 11; pp. 1206 - 1211
Main Authors Feng, Yong-Jian, Lin, Kang-Ping, Tsai, Cheng-Lung, Wei, Hung-Wen
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 08.09.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sufficient interfragmental movement is the key to successful fracture healing in the theory of secondary bone healing. The far-cortical locking technique enables both stiffness reduction and parallel motion for ideal callus formation and fracture healing, but the influence of plate-bone gap on the performance of far-cortical locking technique remains unclear. The current study conducted a series of finite element analyses with mechanical validation to clarify this issue. Plate-bone gaps were assigned by 1, 2, 3, and 4 mm in a simulated mid-shaft fracture model fixed with locking plate and six semi-rigid locking screws. Axial compressive load to 500 N was applied to the fixation structure to evaluate the structural stiffness, pattern of interfragmental movement (parallel motion), and stresses on the screws. Results revealed the increased plate-bone gaps reduced the structural in order (315.3, 288.8, 264.9, and 243.4 N/mm). Tilting angles for determining parallel interfragmental movement (1.58°-1.85°) and stresses on semi-rigid screws for evaluating implant safety were not severely altered. Greater stresses were found on the screws adjacent to the fracture site in all simulated models. The current study suggested that 1 mm gap between the locking plate and the bone shall be ideal in view of parallel motion achieved balanced callus formation in far-cortical locking technique. Issue of reducing structural stiffness with limited plate-bone gap distance should be further investigated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1025-5842
1476-8259
1476-8259
DOI:10.1080/10255842.2020.1870964