A Unified Epi-Seal Process for Fabrication of High-Stability Microelectromechanical Devices
This paper presents a thin-film wafer-level encapsulation process based on an epitaxial deposition seal that incorporates both narrow and wide lateral transduction gaps (0.7-50 μm), both in-plane and out-of-plane electrodes, and does not require release etch-holes in the device layer. Resonant struc...
Saved in:
Published in | Journal of microelectromechanical systems Vol. 25; no. 3; pp. 489 - 497 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a thin-film wafer-level encapsulation process based on an epitaxial deposition seal that incorporates both narrow and wide lateral transduction gaps (0.7-50 μm), both in-plane and out-of-plane electrodes, and does not require release etch-holes in the device layer. Resonant structures fabricated in this process demonstrate high-quality factors ( f × Q products of up to 2.27e + 13 Hz) and exceptional stability (±18 ppb over one month) with no obvious aging trends. Studies on cavity pressure indicate that vacuum levels better than 0.1 Pa can be achieved after final encapsulation, thus reducing gas damping for high surface-to-volume devices. The vast diversity of functioning devices built in this process demonstrates the potential for combinations of high-performance MEMS devices in a single process and/or single chip. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2016.2537829 |