A Unified Epi-Seal Process for Fabrication of High-Stability Microelectromechanical Devices

This paper presents a thin-film wafer-level encapsulation process based on an epitaxial deposition seal that incorporates both narrow and wide lateral transduction gaps (0.7-50 μm), both in-plane and out-of-plane electrodes, and does not require release etch-holes in the device layer. Resonant struc...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 25; no. 3; pp. 489 - 497
Main Authors Yushi Yang, Ng, Eldwin J., Yunhan Chen, Flader, Ian B., Kenny, Thomas W.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a thin-film wafer-level encapsulation process based on an epitaxial deposition seal that incorporates both narrow and wide lateral transduction gaps (0.7-50 μm), both in-plane and out-of-plane electrodes, and does not require release etch-holes in the device layer. Resonant structures fabricated in this process demonstrate high-quality factors ( f × Q products of up to 2.27e + 13 Hz) and exceptional stability (±18 ppb over one month) with no obvious aging trends. Studies on cavity pressure indicate that vacuum levels better than 0.1 Pa can be achieved after final encapsulation, thus reducing gas damping for high surface-to-volume devices. The vast diversity of functioning devices built in this process demonstrates the potential for combinations of high-performance MEMS devices in a single process and/or single chip.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2016.2537829