Micromachined quartz resonator based infrared detector array

We report the fabrication and performance of a micromachined Y-cut quartz resonator based thermal infrared detector array. 1 mm diameter and 18 μm thick (90 MHz) inverted mesa configuration quartz resonator arrays with excellent resonance characteristics have been fabricated by RIE etching of quartz...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 149; no. 2; pp. 189 - 192
Main Authors Kao, Ping, Tadigadapa, Srinivas
Format Journal Article
LanguageEnglish
Published Elsevier B.V 16.02.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report the fabrication and performance of a micromachined Y-cut quartz resonator based thermal infrared detector array. 1 mm diameter and 18 μm thick (90 MHz) inverted mesa configuration quartz resonator arrays with excellent resonance characteristics have been fabricated by RIE etching of quartz. Temperature sensitivity of 7.2 kHz/K was experimentally measured. Infrared calibration tests on the resonator array even without the use of infrared absorbers gave a responsivity of 14.3 MHz/W and an NEP of 326 nW. In this first report on the performance of the Y-cut quartz resonator infrared thermal detector array, the response time measurements were found to be limited by the slow measurement time of the impedance scans and the undesired heating of the quartz substrate. Most importantly, this initial work demonstrates the possibility of realizing infrared detector arrays for room temperature thermal imaging applications that can rival current state of the art in the field.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0924-4247
1873-3069
DOI:10.1016/j.sna.2008.11.013