Biosorption of chromium(VI) in aqueous solutions by chemically modified Strychnine tree fruit shell
Chromium(VI) was removed from aqueous solution using sulfuric- and phosphoric-acid-activated Strychnine tree fruit shells (SSTFS and PSTFS) as biosorbents. Effects of various parameters such as adsorbent dose (0.02-0.1 g/L), temperature (303-333 K), agitation speed, solution pH (2-9), contact time,...
Saved in:
Published in | International journal of phytoremediation Vol. 19; no. 12; pp. 1065 - 1076 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
02.12.2017
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Chromium(VI) was removed from aqueous solution using sulfuric- and phosphoric-acid-activated Strychnine tree fruit shells (SSTFS and PSTFS) as biosorbents. Effects of various parameters such as adsorbent dose (0.02-0.1 g/L), temperature (303-333 K), agitation speed, solution pH (2-9), contact time, and initial Cr(VI) concentration (50-250 mg/L) were studied for a batch adsorption system. The optimum pH range for Cr(VI) adsorption was determined as 2. Equilibrium adsorption data were analyzed with isotherm models and the Langmuir and Freundlich models got best fitted values for SSTFS (R
2
value - 0.994) and PSTFS (R
2
value - 0.996), respectively. The maximum adsorption capacities of SSTFS and PSTFS were 100 and 142.85 mg/g, respectively. The biosorption process was well explained by pseudo-second-order kinetic model with higher R
2
value (SSTFS - 0.996, PSTFS - 0.990) for both biosorbents. Characterization of biosorbents was done using Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, energy-dispersive X-ray analysis, and thermogravimetric analysis. Thermodynamic studies revealed the spontaneous, endothermic, and randomness in nature of the Cr(VI) adsorption process. Different concentrations of NaOH solutions were used to perform the desorption studies. The results demonstrated that both SSTFS and PSTFS can be used as an effective and low-cost biosorbent for removal of Cr(VI) from aqueous solutions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1522-6514 1549-7879 |
DOI: | 10.1080/15226514.2017.1328386 |