Influence of morphologies on the field emission performance of oriented ZnO nano-arrays
Different morphologies of comb-like ZnO and oriented ZnO nano-arrays such as ZnO nanoneedles and ZnO nanorods were synthesized by using flexible thermal evaporation method via simply adjusting the temperature and oxygen content. The ZnO nanorods arrays have the lowest turn-on field, highest current...
Saved in:
Published in | Journal of semiconductors Vol. 32; no. 12; pp. 44 - 47 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Different morphologies of comb-like ZnO and oriented ZnO nano-arrays such as ZnO nanoneedles and ZnO nanorods were synthesized by using flexible thermal evaporation method via simply adjusting the temperature and oxygen content. The ZnO nanorods arrays have the lowest turn-on field, highest current density and the largest emission efficiency owning to its good contact with the substrate and relatively weaker field screening effects. The experiments show that the morphologies and orientation of one-dimensional (1D) ZnO nanomaterials have considerable effects on the turn-on field and the emission current density, and the nanoarray also contributes to electrons emission. The results could be valuable for the application of ZnO nanorod arrays as cathode materials in field emission based devices. |
---|---|
Bibliography: | ZnO; oriented; nanorods; field emission; morphology Wang Lingjie, Yang Zunxian, Lin Jinyang, and Guo Yailiang(1 College of Physics and Information Engineering, Fuzhou University, Fuzhou 350002, China 2Department of Mathematics and Physics, Xiamen University of Technology, Xiamen 361024, China) 11-5781/TN Different morphologies of comb-like ZnO and oriented ZnO nano-arrays such as ZnO nanoneedles and ZnO nanorods were synthesized by using flexible thermal evaporation method via simply adjusting the temperature and oxygen content. The ZnO nanorods arrays have the lowest turn-on field, highest current density and the largest emission efficiency owning to its good contact with the substrate and relatively weaker field screening effects. The experiments show that the morphologies and orientation of one-dimensional (1D) ZnO nanomaterials have considerable effects on the turn-on field and the emission current density, and the nanoarray also contributes to electrons emission. The results could be valuable for the application of ZnO nanorod arrays as cathode materials in field emission based devices. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1674-4926 |
DOI: | 10.1088/1674-4926/32/12/123001 |