Long-term effects of high-fat or high-carbohydrate diets on glucose tolerance in mice with heterozygous carnitine palmitoyltransferase-1a deficiency

Background: Abnormal fatty acid metabolism is an important feature in the mechanisms of insulin resistance and β-cell dysfunction. Carnitine palmitoyltransferase-1a (CPT-1a, liver isoform) has a pivotal role in the regulation of mitochondrial fatty acid oxidation. We investigated the role of CPT-1a...

Full description

Saved in:
Bibliographic Details
Published inNutrition & diabetes Vol. 1; no. 8; p. e14
Main Authors Nyman, L R, Tian, L, Hamm, D A, Schoeb, T R, Gower, B A, Nagy, T R, Wood, P A
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background: Abnormal fatty acid metabolism is an important feature in the mechanisms of insulin resistance and β-cell dysfunction. Carnitine palmitoyltransferase-1a (CPT-1a, liver isoform) has a pivotal role in the regulation of mitochondrial fatty acid oxidation. We investigated the role of CPT-1a in the development of impaired glucose tolerance using a mouse model for CPT-1a deficiency when challenged by either a high-carbohydrate (HCD) or a high-fat diet (HFD) for a total duration of up to 46 weeks. Methods: Insulin sensitivity and glucose tolerance were assessed in heterozygous CPT-1a-deficient (CPT-1a+/−) male mice after being fed either a HCD or a HFD for durations of 28 weeks and 46 weeks. Both glucose and insulin tolerance tests were used to investigate β-cell function and insulin sensitivity. Differences in islet insulin content and hepatic steatosis were evaluated by morphological analysis. Results: CPT-1a+/− mice were more insulin-sensitive than CPT-1a+/+ mice when fed either HCD or HFD. The increased insulin sensitivity was associated with an increased expression of Cpt-1b (muscle isoform) in liver, as well as increased microvesicular hepatic steatosis compared with CPT-1a+/+ mice. CPT-1a+/− mice were more glucose tolerant than CPT-1a+/+ mice when fed the HCD, but there was no significant difference when fed HFD. Moreover, CPT-1a+/− mice fed HFD or HCD had fewer and smaller pancreatic islets than CPT-1a+/+ mice. Conclusions: CPT-1a deficiency preserved insulin sensitivity when challenged by long-term feeding of either diet. Furthermore, CPT-1a-deficient mice had distinct phenotypes dependent on the diet fed demonstrating that both diet and genetics collectively have a role in the development of impaired glucose tolerance.
ISSN:2044-4052
2044-4052
DOI:10.1038/nutd.2011.11