Structure based designing of benzimidazole/benzoxazole derivatives as anti-leishmanial agents

Folates are essential biomolecules required to carry out many crucial processes in leishmania parasite. Dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) involved in folate biosynthesis in leishmania have been established as suitable targets for development of c...

Full description

Saved in:
Bibliographic Details
Published inSAR and QSAR in environmental research Vol. 30; no. 12; pp. 919 - 933
Main Authors Kapil, S., Singh, P.K., Kashyap, A., Silakari, O.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 02.12.2019
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Folates are essential biomolecules required to carry out many crucial processes in leishmania parasite. Dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) involved in folate biosynthesis in leishmania have been established as suitable targets for development of chemotherapy against leishmaniasis. In the present study, various computational tools such as homology modelling, pharmacophore modelling, docking, molecular dynamics and molecular mechanics have been employed to design dual DHFR-TS and PTR1 inhibitors. Two designed molecules, i.e. 2-(4-((4-nitrobenzyl)oxy)phenyl)-1H-benzo[d]imidazole and 2-(4-((2,4-dichlorobenzyl)oxy)phenyl)-1H-benzo[d]oxazolemolecules were synthesized. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed to evaluate in vitro activity of molecules against promastigote form of Leishmania donovani using Miltefosine as standard. 2-(4-((4-nitrobenzyl)oxy)phenyl)-1H-benzo[d]imidazole and 2-(4-((2,4-dichlorobenzyl)oxy)phenyl)-1H-benzo[d]oxazolemolecules were found to be moderately active with showed IC 50  = 68 ± 2.8 µM and 57 ± 4.2 µM, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1062-936X
1029-046X
DOI:10.1080/1062936X.2019.1684357