Photoinduced diffraction grating in hybrid artificial molecule
Photoinduced diffraction grating is theoretically investigated in a three-level ladder-type hybrid artificial molecule comprised of a semiconductor quantum dot (SQD) and a metal nanoparticle (MNP). The SQD and the MNP are coupled via the Coulomb interaction. The probe absorption vanishes under the a...
Saved in:
Published in | Optics express Vol. 20; no. 2; pp. 1219 - 1229 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
16.01.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Photoinduced diffraction grating is theoretically investigated in a three-level ladder-type hybrid artificial molecule comprised of a semiconductor quantum dot (SQD) and a metal nanoparticle (MNP). The SQD and the MNP are coupled via the Coulomb interaction. The probe absorption vanishes under the action of a strong coupling field, indicating an effect of electromagnetically induced transparency (EIT). Based on this EIT effect, diffraction grating is achievable when a standing-wave coupling field is applied. It turns out that the efficiency of diffraction grating is greatly improved due to the existence of the MNP. Furthermore, the diffraction efficiency can be controlled by tuning the interaction strength between the SQD and the MNP. Nearly pure phase grating is obtained, showing high transmissivity and high diffraction efficiency up to 33%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.20.001219 |