Mutual Interference Mitigation of Millimeter-Wave Radar Based on Variational Mode Decomposition and Signal Reconstruction
As an important remote sensing technology, millimeter-wave radar is used for environmental sensing in many fields due to its advantages of all-day, all-weather operation. With the increasing use of radars, inter-radar interference becomes increasingly critical. Severe mutual interference degrades ra...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 3; p. 557 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | As an important remote sensing technology, millimeter-wave radar is used for environmental sensing in many fields due to its advantages of all-day, all-weather operation. With the increasing use of radars, inter-radar interference becomes increasingly critical. Severe mutual interference degrades radar signal quality and affects the performance of post-processing, e.g., synthetic aperture radar (SAR) imaging and target tracking. Aiming to deal with mutual interference, we propose an interference mitigation method based on variational mode decomposition (VMD). With the characteristics that the target is a single-frequency sine wave and the interference is a broadband signal, VMD is used for decomposing the radar received signal and separating the target from the interference. Interference mitigation is then implemented in each decomposed mode, and an interference-free signal is obtained through the reconstruction process. Simulation results of multi-target scenarios demonstrate that the proposed method outperforms existing decomposition-based methods. This conclusion is also confirmed by the experimental results on real data. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15030557 |