Meta-analysis of three polymorphisms in the steroid-5-alpha-reductase, alpha polypeptide 2 gene (SRD5A2) and risk of prostate cancer

The steroid-5-alpha-reductase, alpha polypeptide 2 (SRD5A2) gene plays a crucial role in androgen metabolism pathway in human prostate. It encodes SRD5A2 enzyme, which catalyses testosterone to dihydrotestosterone (DHT). DHT is the main active structure binding with androgen receptor (AR). After the...

Full description

Saved in:
Bibliographic Details
Published inMutagenesis Vol. 26; no. 3; pp. 371 - 383
Main Authors Li, X., Huang, Y., Fu, X., Chen, C., Zhang, D., Yan, L., Xie, Y., Mao, Y., Li, Y.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.05.2011
Subjects
Online AccessGet full text
ISSN0267-8357
1464-3804
1464-3804
DOI10.1093/mutage/geq103

Cover

More Information
Summary:The steroid-5-alpha-reductase, alpha polypeptide 2 (SRD5A2) gene plays a crucial role in androgen metabolism pathway in human prostate. It encodes SRD5A2 enzyme, which catalyses testosterone to dihydrotestosterone (DHT). DHT is the main active structure binding with androgen receptor (AR). After the activation of AR, it further regulates a series of target genes in androgen metabolism pathway. However, no clear consensus has been reached on the association between the SRD5A2 V89L, A49T and TA repeat polymorphisms and prostate cancer (PCa) risk. Thus, we performed a meta-analysis of 31 association studies with 14,726 PCa cases and 15,802 controls. We found no association between PCa and 89L compared with 89V allele [odds ratio (OR) = 1.02, 95% confidence interval (CI) 0.98-1.06, P(heterogeneity) = 0.44]. The 49T allele showed a significantly elevated effect on the high stage (Stages III-IV) of PCa risk both under the dominant genetic model (OR = 2.13, 95% CI 1.44-3.15, P(heterogeneity) = 0.65) and in the contrast T versus A allele (OR = 2.06, 95% CI 1.41-3.02, P(heterogeneity) = 0.69). There was a significantly decreased association between PCa and long TA repeat as compared versus short TA repeat (OR = 0.86, 95% CI 0.74-1.00, P(heterogeneity) = 0.79). No significant between-study heterogeneity was found in all subjects under four genetic models (dominant model, recessive model, allele comparison and homozygosity comparison) for these three polymorphisms, respectively, so the fixed effects model was used to pool the result. Our result indicated that carriers of 49T might improve the risk of PCa in higher stages (Stages III-IV), carriers of long TA repeat might decrease the risk of PCa and 89L may not be an important risk factor for PCa. However, due to the limited sample sizes, this meta-analysis did not achieve sufficiently conclusive results. Still more well-designed studies should be performed to clarify the role of these three polymorphisms in the development of PCa.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0267-8357
1464-3804
1464-3804
DOI:10.1093/mutage/geq103