ANN-Based Prediction and Optimization of Cooling System in Hotel Rooms

This study aimed at developing an artificial-neural-network (ANN)-based model that can calculate the required time for restoring the current indoor temperature during the setback period in accommodation buildings to the normal set-point temperature in the cooling season. By applying the calculated t...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 8; no. 10; pp. 10775 - 10795
Main Authors Moon, Jin Woo, Kim, Kyungjae, Min, Hyunsuk
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study aimed at developing an artificial-neural-network (ANN)-based model that can calculate the required time for restoring the current indoor temperature during the setback period in accommodation buildings to the normal set-point temperature in the cooling season. By applying the calculated time in the control logic, the operation of the cooling system can be predetermined to condition the indoor temperature comfortably in a more energy-efficient manner. Three major steps employing the numerical computer simulation method were conducted for developing an ANN model and testing its prediction performance. In the development process, the initial ANN model was determined to have input neurons that had a significant statistical relationship with the output neuron. In addition, the structure of the ANN model and learning methods were optimized through the parametrical analysis of the prediction performance. Finally, through the performance tests in terms of prediction accuracy, the optimized ANN model presented a lower mean biased error (MBE) rate between the simulation and prediction results under generally accepted levels. Thus, the developed ANN model was proven to have the potential to be applied to thermal control logic.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1073
1996-1073
DOI:10.3390/en81010775