Agricultural Drought Detection with MODIS Based Vegetation Health Indices in Southeast Germany

Droughts during the growing season are projected to increase in frequency and severity in Central Europe in the future. Thus, area-wide monitoring of agricultural drought in this region is becoming more and more important. In this context, it is essential to know where and when vegetation growth is...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 19; p. 3907
Main Authors Kloos, Simon, Yuan, Ye, Castelli, Mariapina, Menzel, Annette
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Droughts during the growing season are projected to increase in frequency and severity in Central Europe in the future. Thus, area-wide monitoring of agricultural drought in this region is becoming more and more important. In this context, it is essential to know where and when vegetation growth is primarily water-limited and whether remote sensing-based drought indices can detect agricultural drought in these areas. To answer these questions, we conducted a correlation analysis between the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) within the growing season from 2001 to 2020 in Bavaria (Germany) and investigated the relationship with land cover and altitude. In the second step, we applied the drought indices Temperature Condition Index (TCI), Vegetation Condition Index (VCI), and Vegetation Health Index (VHI) to primarily water-limited areas and evaluated them with soil moisture and agricultural yield anomalies. We found that, especially in the summer months (July and August), on agricultural land and grassland and below 800 m, NDVI and LST are negatively correlated and thus, water is the primary limiting factor for vegetation growth here. Within these areas and periods, the TCI and VHI correlate strongly with soil moisture and agricultural yield anomalies, suggesting that both indices have the potential to detect agricultural drought in Bavaria.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13193907