Neural Preassigned Performance Control for State-Constrained Nonlinear Systems Subject to Disturbances

This article addresses the finite-time neural predefined performance control (PPC) issue for state-constrained nonlinear systems (NSs) with exogenous disturbances. By integrating the predefined-time performance function (PTPF) and the conventional barrier Lyapunov function (BLF), a new set of time-v...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 36; no. 3; pp. 5032 - 5043
Main Authors Liu, Wei, Zhao, Jianhang, Zhao, Huanyu, Ma, Qian, Xu, Shengyuan, Park, Ju H.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article addresses the finite-time neural predefined performance control (PPC) issue for state-constrained nonlinear systems (NSs) with exogenous disturbances. By integrating the predefined-time performance function (PTPF) and the conventional barrier Lyapunov function (BLF), a new set of time-varying BLFs is designed to constrain the error variables. This establishes conditions for satisfying full-state constraints while ensuring that the tracking error meets the predefined performance indicators (PPIs) within a predefined time. Additionally, the incorporation of the nonlinear disturbance observer technique (NDOT) in the control design significantly enhances the ability of the system to reject disturbances and improves overall robustness. Leveraging recursive design based on dynamic surface control (DSC), a finite-time neural adaptive PPC strategy is devised to ensure that the closed-loop system is semi-globally practically finite-time stable (SPFS) and achieves the desired PPIs. Finally, the simulation results of two practical examples validate the efficacy and viability of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2024.3377462