A Time-Frequency Joint Time-Delay Difference Estimation Method for Signal Enhancement in the Distorted towed Hydrophone Array
To acquire the enhanced underwater ship-radiated noise signal in the presence of array shape distortion in a passive sonar system, the phase difference of the line-spectrum component in ship-radiated noise is often exploited to estimate the time-delay difference for the beamforming-based signal enha...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 22; p. 4586 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs13224586 |
Cover
Summary: | To acquire the enhanced underwater ship-radiated noise signal in the presence of array shape distortion in a passive sonar system, the phase difference of the line-spectrum component in ship-radiated noise is often exploited to estimate the time-delay difference for the beamforming-based signal enhancement. However, the time-delay difference estimation performance drastically degrades with decreases of the signal-to-noise ratio (SNR) of the line-spectrum component. Meanwhile, although the time-delay difference estimation performance of the high-frequency line-spectrum components is generally superior to that of the low-frequency one, the phase difference measurements of the high-frequency line-spectrum component often easily encounter the issue of modulus 2π ambiguity. To address the above issues, a novel time-frequency joint time-delay difference estimation method is proposed in this paper. The proposed method establishes a data-driven hidden Markov model with robustness to phase difference ambiguity by fully exploiting the underlying property of slowly changing the time-delay difference over time. Thus, the phase difference measurements available for time-delay difference estimation are extended from that of low-frequency line-spectrum components in a single frame to that of all detected line-spectrum components in multiple frames. By jointly taking advantage of the phase difference measurements in both time and frequency dimensions, the proposed method can acquire enhanced time-delay difference estimates even in a low SNR case. Both simulation and at-sea experimental results have demonstrated the effectiveness of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13224586 |