Diabetes classification application with efficient missing and outliers data handling algorithms

Communication between sensors spread everywhere in healthcare systems may cause some missing in the transferred features. Repairing the data problems of sensing devices by artificial intelligence technologies have facilitated the Medical Internet of Things (MIoT) and its emerging applications in Hea...

Full description

Saved in:
Bibliographic Details
Published inComplex & intelligent systems Vol. 8; no. 1; pp. 237 - 253
Main Authors Torkey, Hanaa, Ibrahim, Elhossiny, Hemdan, EZZ El-Din, El-Sayed, Ayman, Shouman, Marwa A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Communication between sensors spread everywhere in healthcare systems may cause some missing in the transferred features. Repairing the data problems of sensing devices by artificial intelligence technologies have facilitated the Medical Internet of Things (MIoT) and its emerging applications in Healthcare. MIoT has great potential to affect the patient's life. Data collected from smart wearable devices size dramatically increases with data collected from millions of patients who are suffering from diseases such as diabetes. However, sensors or human errors lead to missing some values of the data. The major challenge of this problem is how to predict this value to maintain the data analysis model performance within a good range. In this paper, a complete healthcare system for diabetics has been used, as well as two new algorithms are developed to handle the crucial problem of missed data from MIoT wearable sensors. The proposed work is based on the integration of Random Forest, mean, class' mean, interquartile range (IQR), and Deep Learning to produce a clean and complete dataset. Which can enhance any machine learning model performance. Moreover, the outliers repair technique is proposed based on dataset class detection, then repair it by Deep Learning (DL). The final model accuracy with the two steps of imputation and outliers repair is 97.41% and 99.71% Area Under Curve (AUC). The used healthcare system is a web-based diabetes classification application using flask to be used in hospitals and healthcare centers for the patient diagnosed with an effective fashion.
ISSN:2199-4536
2198-6053
DOI:10.1007/s40747-021-00349-2