Stochastic Models for Sparse and Piecewise-Smooth Signals

We introduce an extended family of continuous-domain stochastic models for sparse, piecewise-smooth signals. These are specified as solutions of stochastic differential equations, or, equivalently, in terms of a suitable innovation model; the latter is analogous conceptually to the classical interpr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 59; no. 3; pp. 989 - 1006
Main Authors Unser, M, Tafti, P D
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce an extended family of continuous-domain stochastic models for sparse, piecewise-smooth signals. These are specified as solutions of stochastic differential equations, or, equivalently, in terms of a suitable innovation model; the latter is analogous conceptually to the classical interpretation of a Gaussian stationary process as filtered white noise. The two specific features of our approach are 1) signal generation is driven by a random stream of Dirac impulses (Poisson noise) instead of Gaussian white noise, and 2) the class of admissible whitening operators is considerably larger than what is allowed in the conventional theory of stationary processes. We provide a complete characterization of these finite-rate-of-innovation signals within Gelfand's framework of generalized stochastic processes. We then focus on the class of scale-invariant whitening operators which correspond to unstable systems. We show that these can be solved by introducing proper boundary conditions, which leads to the specification of random, spline-type signals that are piecewise-smooth. These processes are the Poisson counterpart of fractional Brownian motion; they are nonstationary and have the same 1/ω-type spectral signature. We prove that the generalized Poisson processes have a sparse representation in a wavelet-like basis subject to some mild matching condition. We also present a limit example of sparse process that yields a MAP signal estimator that is equivalent to the popular TV-denoising algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2010.2091638