Structural Basis for the Thermostability of Ferredoxin from the Cyanobacterium Mastigocladus laminosus

Plant-type ferredoxins (Fds) carry a single [2Fe-2S] cluster and serve as electron acceptors of photosystem I (PSI). The ferredoxin from the thermophilic cyanobacterium Mastigocladus laminosus displays optimal activity at 65 °C. In order to reveal the molecular factors that confer thermostability, t...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular biology Vol. 350; no. 3; pp. 599 - 608
Main Authors Fish, Alexander, Danieli, Tsafi, Ohad, Itzhak, Nechushtai, Rachel, Livnah, Oded
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.07.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plant-type ferredoxins (Fds) carry a single [2Fe-2S] cluster and serve as electron acceptors of photosystem I (PSI). The ferredoxin from the thermophilic cyanobacterium Mastigocladus laminosus displays optimal activity at 65 °C. In order to reveal the molecular factors that confer thermostability, the crystal structure of M. laminosus Fd (mFd) was determined to 1.25 Å resolution and subsequently analyzed in comparison with four similar plant-type mesophilic ferredoxins. The topologies of the plant-type ferredoxins are similar, yet two structural determinants were identified that may account for differences in thermostability, a salt bridge network in the C-terminal region, and the flexible L1,2 loop that increases hydrophobic accessible surface area. These conclusions were verified by three mutations, i.e. substitution of L1,2 into a rigid β-turn (ΔL1,2) and two point mutations (E90S and E96S) that disrupt the salt bridge network at the C-terminal region. All three mutants have shown reduced electron transfer (ET) capabilities and [2Fe-2S] stability at high temperatures in comparison to the wild-type mFd. The results have also provided new insights into the involvement of the L1,2 loop in the Fd interactions with its electron donor, the PSI complex.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2005.04.071