bFGF and Poly‐RGD Cooperatively Establish Biointerface for Stem Cell Adhesion, Proliferation, and Differentiation

Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile platform to connect biological entities and nonbiogenic materials. Existing nanofabrication approaches to create such a nanostructured bioin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 5; no. 7
Main Authors Jiang, Nan, Wang, Yong, Yin, Yi‐Xia, Wei, Rui‐Peng, Ying, Guo‐Liang, Li, Bin‐Bin, Qiu, Tong, Rijn, Patrick, Tian, Ge, Yan, Qiong‐Jiao, Dai, Hong‐Lian, Busscher, Henk J., Li, Shi‐Pu, Yetisen, Ali K., Yang, Xiao‐Yu
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 09.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile platform to connect biological entities and nonbiogenic materials. Existing nanofabrication approaches to create such a nanostructured biointerface involve in low stability of the functionalized nanolayer and simple functionalities that limit its applicability. Here, a stable nanolayered synthetic polypeptide (poly[LA‐co‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid, PRGD)/basic fibroblast growth factor (bFGF) biointerface is created via structural matching, charge interaction, and hydrogen bonding. The cooperative effect of the PRGD/bFGF biointerface shows multiple functionalities in promoting stem cell adhesion by 33% increase in cell adhesion to poly(d,l‐lactic acid) substrate as compared to experiments on bare substrate as a control. Moreover, the biointerface enhances proliferation by 40% in cell density, potential differentiation by 62%, and gene expression by 40 and 80% respectively as compared to the control samples. The fabricated biointerface may have applications in nerve regeneration, tissue repair, and stem cell‐based therapy. A cooperative effect is developed by fabricating a stable nanolayered synthetic polypeptide (poly[LA‐co‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid)/basic fibroblast growth factor biointerface via structural matching and hydrogen bonding. Such a functionality‐stable biointerface shows multiple functionalities in promoting stem cell adhesion, proliferation in cell density, and differentiation. This biointerface may have applications in nerve regeneration, tissue repair, and cell therapy.
AbstractList Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile platform to connect biological entities and nonbiogenic materials. Existing nanofabrication approaches to create such a nanostructured biointerface involve in low stability of the functionalized nanolayer and simple functionalities that limit its applicability. Here, a stable nanolayered synthetic polypeptide (poly[LA‐ co ‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid, PRGD)/basic fibroblast growth factor (bFGF) biointerface is created via structural matching, charge interaction, and hydrogen bonding. The cooperative effect of the PRGD/bFGF biointerface shows multiple functionalities in promoting stem cell adhesion by 33% increase in cell adhesion to poly( d,l ‐lactic acid) substrate as compared to experiments on bare substrate as a control. Moreover, the biointerface enhances proliferation by 40% in cell density, potential differentiation by 62%, and gene expression by 40 and 80% respectively as compared to the control samples. The fabricated biointerface may have applications in nerve regeneration, tissue repair, and stem cell‐based therapy.
Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile platform to connect biological entities and nonbiogenic materials. Existing nanofabrication approaches to create such a nanostructured biointerface involve in low stability of the functionalized nanolayer and simple functionalities that limit its applicability. Here, a stable nanolayered synthetic polypeptide (poly[LA‐co‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid, PRGD)/basic fibroblast growth factor (bFGF) biointerface is created via structural matching, charge interaction, and hydrogen bonding. The cooperative effect of the PRGD/bFGF biointerface shows multiple functionalities in promoting stem cell adhesion by 33% increase in cell adhesion to poly(d,l‐lactic acid) substrate as compared to experiments on bare substrate as a control. Moreover, the biointerface enhances proliferation by 40% in cell density, potential differentiation by 62%, and gene expression by 40 and 80% respectively as compared to the control samples. The fabricated biointerface may have applications in nerve regeneration, tissue repair, and stem cell‐based therapy.
Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile platform to connect biological entities and nonbiogenic materials. Existing nanofabrication approaches to create such a nanostructured biointerface involve in low stability of the functionalized nanolayer and simple functionalities that limit its applicability. Here, a stable nanolayered synthetic polypeptide (poly[LA‐co‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid, PRGD)/basic fibroblast growth factor (bFGF) biointerface is created via structural matching, charge interaction, and hydrogen bonding. The cooperative effect of the PRGD/bFGF biointerface shows multiple functionalities in promoting stem cell adhesion by 33% increase in cell adhesion to poly(d,l‐lactic acid) substrate as compared to experiments on bare substrate as a control. Moreover, the biointerface enhances proliferation by 40% in cell density, potential differentiation by 62%, and gene expression by 40 and 80% respectively as compared to the control samples. The fabricated biointerface may have applications in nerve regeneration, tissue repair, and stem cell‐based therapy. A cooperative effect is developed by fabricating a stable nanolayered synthetic polypeptide (poly[LA‐co‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid)/basic fibroblast growth factor biointerface via structural matching and hydrogen bonding. Such a functionality‐stable biointerface shows multiple functionalities in promoting stem cell adhesion, proliferation in cell density, and differentiation. This biointerface may have applications in nerve regeneration, tissue repair, and cell therapy.
Author Jiang, Nan
Dai, Hong‐Lian
Li, Shi‐Pu
Ying, Guo‐Liang
Tian, Ge
Wang, Yong
Yang, Xiao‐Yu
Wei, Rui‐Peng
Yan, Qiong‐Jiao
Li, Bin‐Bin
Yin, Yi‐Xia
Rijn, Patrick
Qiu, Tong
Busscher, Henk J.
Yetisen, Ali K.
Author_xml – sequence: 1
  givenname: Nan
  surname: Jiang
  fullname: Jiang, Nan
  organization: Harvard University
– sequence: 2
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  organization: Wuhan University of Technology
– sequence: 3
  givenname: Yi‐Xia
  surname: Yin
  fullname: Yin, Yi‐Xia
  email: yinyixia@whut.edu.cn
  organization: Harvard Medical School
– sequence: 4
  givenname: Rui‐Peng
  surname: Wei
  fullname: Wei, Rui‐Peng
  organization: Wuhan University of Technology
– sequence: 5
  givenname: Guo‐Liang
  surname: Ying
  fullname: Ying, Guo‐Liang
  organization: Wuhan Institute of Technology
– sequence: 6
  givenname: Bin‐Bin
  surname: Li
  fullname: Li, Bin‐Bin
  organization: Wuhan University of Technology
– sequence: 7
  givenname: Tong
  surname: Qiu
  fullname: Qiu, Tong
  organization: Wuhan University of Technology
– sequence: 8
  givenname: Patrick
  surname: Rijn
  fullname: Rijn, Patrick
  organization: University of Groningen/University Medical Center Groningen
– sequence: 9
  givenname: Ge
  surname: Tian
  fullname: Tian, Ge
  organization: Wuhan University of Technology
– sequence: 10
  givenname: Qiong‐Jiao
  surname: Yan
  fullname: Yan, Qiong‐Jiao
  organization: Wuhan University of Technology
– sequence: 11
  givenname: Hong‐Lian
  surname: Dai
  fullname: Dai, Hong‐Lian
  organization: Wuhan University of Technology
– sequence: 12
  givenname: Henk J.
  surname: Busscher
  fullname: Busscher, Henk J.
  organization: University of Groningen/University Medical Center Groningen
– sequence: 13
  givenname: Shi‐Pu
  surname: Li
  fullname: Li, Shi‐Pu
  organization: Wuhan University of Technology
– sequence: 14
  givenname: Ali K.
  surname: Yetisen
  fullname: Yetisen, Ali K.
  organization: University of Birmingham
– sequence: 15
  givenname: Xiao‐Yu
  orcidid: 0000-0003-3454-3604
  surname: Yang
  fullname: Yang, Xiao‐Yu
  email: xyyang@whut.edu.cn, xyyang@seas.harvard.edu
  organization: Harvard University
BookMark eNqFkE1PAjEQhhujiYhcPTfxKtgPlu4eEQRJMBI_zptuOw0lZYvtquHmT_A3-ktcwKgxMZ5m5s0882beI7Rf-hIQOqGkQwlh51IvbYcRKggRhO2hBqNZry14QvZ_9IeoFeOCEEIpoyzlDRSL0XiEZanxzLv1--vb7XiIB96vIMjKPoNb48tYycLZOMcX1tuygmCkAmx8wHcVLPEAnMN9PYdofXmGZ8E7a7b4ZtycHlpTC1BWdiseowMjXYTWZ22ih9Hl_eCqPb0ZTwb9aVvxrMvahe5RLpVQhCZapKBEornmgmoherzoScNkwjJFmchAUlrQxHQN1yo1AGna5U10uru7Cv7xCWKVL_xTKGvLnBGWpDytfeqtzm5LBR9jAJOvgl3KsM4pyTfZ5pts869sa6D7C1C22j5WBWnd31i2w16sg_U_Jnl_eD35Zj8Azl-Rkg
CitedBy_id crossref_primary_10_1080_09205063_2021_1980360
crossref_primary_10_1080_09205063_2023_2217063
crossref_primary_10_1002_jbm_a_37590
crossref_primary_10_1002_advs_201700876
crossref_primary_10_1016_j_pmatsci_2019_05_004
crossref_primary_10_1002_adhm_201901239
crossref_primary_10_1039_D0BM01454K
crossref_primary_10_1039_C8SC01130C
crossref_primary_10_1021_acsami_4c09269
crossref_primary_10_1021_acschemneuro_8b00452
crossref_primary_10_1002_admi_201901873
crossref_primary_10_1016_j_ceramint_2018_09_179
crossref_primary_10_1016_j_matdes_2022_111451
Cites_doi 10.1016/j.colsurfb.2016.02.039
10.1021/nn506607x
10.1021/ja0686155
10.1002/jbm.a.35078
10.1016/j.nbd.2008.11.012
10.1038/nmat2442
10.1039/C4TB00555D
10.1016/j.biomaterials.2011.01.037
10.1039/C1EE02391H
10.1002/anie.201609180
10.1016/j.jcis.2011.10.018
10.1074/jbc.M706917200
10.1126/science.290.5497.1779
10.1146/annurev-chembioeng-060713-040042
10.1016/j.biomaterials.2011.02.025
10.1016/j.expneurol.2004.01.027
10.1088/0957-4484/20/10/105702
10.1021/acsami.5b00064
10.1002/adfm.200400106
10.1038/bmt.2008.442
10.1002/smll.201402038
10.1096/fj.10-161497
10.1002/cssc.201100181
10.2174/156802608783790893
10.1016/j.colsurfb.2012.01.003
10.1016/j.brainres.2005.07.035
10.1039/c0an00366b
10.1021/acsami.6b05409
10.1039/C4SC02638A
10.1016/j.colsurfb.2017.04.014
10.1039/C3CS60419E
10.1021/jp0380226
10.1016/S0142-9612(03)00343-0
10.1002/anie.200801202
10.1039/C3CS60174A
10.1039/C4CC06323F
10.1016/S0142-9612(02)00131-X
10.1038/srep18162
10.1016/0968-0004(91)90096-E
10.3390/polym8020054
10.1002/adma.201606407
10.1039/c0cs00053a
10.18632/oncotarget.18256
10.1002/anie.200805179
10.1016/j.biomaterials.2006.03.025
10.1039/c0cs00124d
10.1186/1471-2121-11-25
10.1002/smll.201402381
10.1002/jbm.a.10008
10.1002/smll.200700595
10.1016/S0926-860X(02)00282-X
10.1002/adom.201600162
10.1016/j.apcatb.2016.02.017
10.1021/cg800641s
10.1126/science.1251141
10.1038/srep21809
10.1021/la503872h
10.1016/j.biomaterials.2004.09.008
10.1038/nrd4486
10.1186/1471-2105-3-4
10.1039/c1jm12259b
10.1016/S1369-7021(11)70058-X
10.1002/adfm.201102892
10.4103/1673-5374.158352
10.1002/adma.201001699
10.1016/j.diff.2010.07.001
10.1039/C4BM00382A
10.1111/eos.12244
10.1016/j.colsurfb.2016.04.007
10.1016/j.tibtech.2014.11.002
10.1016/j.bone.2006.09.006
10.1002/anie.201403249
10.1007/s12031-013-0109-2
10.1007/s10439-016-1594-6
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.201700702
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_201700702
ADMI201700702
Genre article
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
DPXWK
EBS
EJD
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAYXX
ABJCF
ABJNI
ACCMX
ADMLS
AFKRA
AFPKN
ARAPS
BENPR
BFHJK
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PTHSS
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3942-bd613ac7c015d78ec75d3d371d7763b6af2a529c1279ea11b15f4f3dc8fee8843
ISSN 2196-7350
IngestDate Fri Jul 25 11:56:28 EDT 2025
Tue Jul 01 00:39:27 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Sat Aug 24 00:51:27 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3942-bd613ac7c015d78ec75d3d371d7763b6af2a529c1279ea11b15f4f3dc8fee8843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3454-3604
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/admi.201700702
PQID 2025838394
PQPubID 2034582
PageCount 8
ParticipantIDs proquest_journals_2025838394
crossref_primary_10_1002_admi_201700702
crossref_citationtrail_10_1002_admi_201700702
wiley_primary_10_1002_admi_201700702_ADMI201700702
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 9, 2018
PublicationDateYYYYMMDD 2018-04-09
PublicationDate_xml – month: 04
  year: 2018
  text: April 9, 2018
  day: 09
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2009; 44
2016 2017; 144 155
2004; 187
2015; 14
2017; 8
2015; 6
2007; 129
1991; 16
2015; 5
2009; 20
2009 2015; 34 7
2009 2015; 8 11
2015; 10
2016; 124
2006 2015; 27 3
2002; 3
2011; 32
1992
2011; 14
2014 2016 2017 2014 2011; 43 6 29 53 40
2015; 9
1983; 18
2010 2007; 11 40
2011 2004 2011 2012; 21 108 4 368
2016; 142
2008; 283
2008 2005; 4 26
2014; 43
2000; 290
2008 2008 2014 2015; 8 47 30 33
2003 2014 2014; 66 52 102
2010; 22
2009 2011; 48 136
2014; 2
2015 2018; 11
2012 2011; 93 25
2002; 23
2017; 56
2011 2016 2008; 40 4 8
2012 2002 2016; 22 236 188
2003 2011; 24 32
2005; 15
2012 2016; 5 44
2014; 50
2010 2005; 80 1056
2016; 8
2014; 344
e_1_2_5_27_1
e_1_2_5_27_2
e_1_2_5_23_3
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_25_2
e_1_2_5_23_1
e_1_2_5_44_3
e_1_2_5_46_1
e_1_2_5_23_2
e_1_2_5_44_2
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_21_2
e_1_2_5_42_2
e_1_2_5_29_1
e_1_2_5_29_2
e_1_2_5_40_3
e_1_2_5_42_1
e_1_2_5_40_2
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_11_4
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_7_2
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_5_2
e_1_2_5_11_3
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_1_5
e_1_2_5_5_1
e_1_2_5_11_2
e_1_2_5_1_4
e_1_2_5_1_3
e_1_2_5_3_1
e_1_2_5_19_4
e_1_2_5_1_2
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_19_3
e_1_2_5_19_2
Li R. (e_1_2_5_43_1) 2017; 8
e_1_2_5_30_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_22_2
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_2
e_1_2_5_37_2
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
Nechipurenko I. (e_1_2_5_17_1) 1983; 18
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_2
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
Geng W. (e_1_2_5_6_2) 2018
e_1_2_5_31_1
References_xml – volume: 290
  start-page: 1779
  year: 2000
  publication-title: Science
– volume: 43
  start-page: 30
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 22
  start-page: 5164
  year: 2010
  publication-title: Adv. Mater.
– volume: 142
  start-page: 98
  year: 2016
  publication-title: Colloids Surf., B
– volume: 144 155
  start-page: 152 229
  year: 2016 2017
  publication-title: Colloids Surf., B Colloids Surf., B
– volume: 15
  start-page: 83
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 486
  year: 2015
  publication-title: Chem. Sci.
– volume: 11
  start-page: 2003
  year: 2015 2018
  publication-title: Small Nanoscale
– volume: 66 52 102
  start-page: 522 538 3734
  year: 2003 2014 2014
  publication-title: J. Biomed. Mater. Res. A J. Mol. Neurosci. J. Biomed. Mater. Res. A
– volume: 43 6 29 53 40
  start-page: 2385 21809 1606407 7789 2909
  year: 2014 2016 2017 2014 2011
  publication-title: Chem. Soc. Rev. Sci. Rep. Adv. Mater. Angew. Chem., Int. Ed. Chem. Soc. Rev.
– volume: 48 136
  start-page: 5406 1502
  year: 2009 2011
  publication-title: Angew. Chem., Int. Ed. Analyst
– volume: 44
  start-page: 133
  year: 2009
  publication-title: Bone Marrow Transplant.
– volume: 22 236 188
  start-page: 3083 17 351
  year: 2012 2002 2016
  publication-title: Adv. Funct. Mater. Appl. Catal. A‐Gen. Appl. Catal. B‐Environ.
– volume: 129
  start-page: 1496
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 5 44
  start-page: 5540 1908
  year: 2012 2016
  publication-title: Energy Environ. Sci. Ann. Biomed. Eng.
– volume: 24 32
  start-page: 4385 4195
  year: 2003 2011
  publication-title: Biomaterials Biomaterials
– volume: 23
  start-page: 3871
  year: 2002
  publication-title: Biomaterials
– volume: 14
  start-page: 95
  year: 2015
  publication-title: Nat. Rev. Drug Discovery
– volume: 3
  start-page: 4
  year: 2002
  publication-title: BMC Bioinf.
– volume: 4 26
  start-page: 26 3055
  year: 2008 2005
  publication-title: Small Biomaterials
– volume: 93 25
  start-page: 8 1474
  year: 2012 2011
  publication-title: Colloids Surf., B FASEB J.
– volume: 80 1056
  start-page: 213 158
  year: 2010 2005
  publication-title: Differentiation Brain Res.
– volume: 283
  start-page: 5287
  year: 2008
  publication-title: J. Biol. Chem.
– volume: 11 40
  start-page: 25 382
  year: 2010 2007
  publication-title: BMC Cell Biol. Bone
– volume: 344
  start-page: 630
  year: 2014
  publication-title: Science
– volume: 8
  start-page: 25036
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 246
  year: 1991
  publication-title: Trends Biochem. Sci.
– volume: 40 4 8
  start-page: 2385 1589 4576
  year: 2011 2016 2008
  publication-title: Chem. Soc. Rev. Adv. Opt. Mater. Cryst. Growth Des.
– volume: 5
  start-page: 18162
  year: 2015
  publication-title: Sci. Rep.
– volume: 18
  start-page: 1066
  year: 1983
  publication-title: Mol. Biol.
– volume: 10
  start-page: 850
  year: 2015
  publication-title: Neural Regener. Res.
– volume: 2
  start-page: 4911
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 6
  start-page: 161
  year: 2015
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 21 108 4 368
  start-page: 17283 4696 1452 128
  year: 2011 2004 2011 2012
  publication-title: J. Mater. Chem. J. Phys. Chem. B ChemSusChem J. Colloid Interf. Sci.
– volume: 187
  start-page: 319
  year: 2004
  publication-title: Exp. Neurol.
– year: 1992
– volume: 32
  start-page: 3404
  year: 2011
  publication-title: Biomaterials
– volume: 56
  start-page: 2497
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 88
  year: 2011
  publication-title: Mater. Today
– volume: 8 47 30 33
  start-page: 341 5666 14905 10
  year: 2008 2008 2014 2015
  publication-title: Curr. Top. Med. Chem. Angew. Chem., Int. Ed. Langmuir Trends Biotechnol.
– volume: 34 7
  start-page: 11 6698
  year: 2009 2015
  publication-title: Neurobiol. Dis. ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 48086
  year: 2017
  publication-title: Oncotarget
– volume: 9
  start-page: 1767
  year: 2015
  publication-title: ACS Nano
– volume: 8 11
  start-page: 543 1097
  year: 2009 2015
  publication-title: Nat. Mater. Small
– volume: 27 3
  start-page: 4132 1066
  year: 2006 2015
  publication-title: Biomaterials Biomater. Sci.
– volume: 124
  start-page: 141
  year: 2016
  publication-title: Eur. J. Oral Sci.
– volume: 50
  start-page: 15407
  year: 2014
  publication-title: Chem. Commun.
– volume: 20
  start-page: 105702
  year: 2009
  publication-title: Nanotechnology
– volume: 8
  start-page: 54
  year: 2016
  publication-title: Polymers
– ident: e_1_2_5_31_1
  doi: 10.1016/j.colsurfb.2016.02.039
– ident: e_1_2_5_13_1
  doi: 10.1021/nn506607x
– ident: e_1_2_5_15_1
  doi: 10.1021/ja0686155
– ident: e_1_2_5_40_3
  doi: 10.1002/jbm.a.35078
– ident: e_1_2_5_27_1
  doi: 10.1016/j.nbd.2008.11.012
– ident: e_1_2_5_5_1
  doi: 10.1038/nmat2442
– ident: e_1_2_5_16_1
  doi: 10.1039/C4TB00555D
– ident: e_1_2_5_41_1
  doi: 10.1016/j.biomaterials.2011.01.037
– ident: e_1_2_5_22_1
  doi: 10.1039/C1EE02391H
– ident: e_1_2_5_10_1
  doi: 10.1002/anie.201609180
– ident: e_1_2_5_19_4
  doi: 10.1016/j.jcis.2011.10.018
– ident: e_1_2_5_38_1
  doi: 10.1074/jbc.M706917200
– ident: e_1_2_5_35_1
  doi: 10.1126/science.290.5497.1779
– ident: e_1_2_5_2_1
  doi: 10.1146/annurev-chembioeng-060713-040042
– ident: e_1_2_5_25_2
  doi: 10.1016/j.biomaterials.2011.02.025
– ident: e_1_2_5_39_1
  doi: 10.1016/j.expneurol.2004.01.027
– ident: e_1_2_5_20_1
  doi: 10.1088/0957-4484/20/10/105702
– ident: e_1_2_5_27_2
  doi: 10.1021/acsami.5b00064
– ident: e_1_2_5_26_1
  doi: 10.1002/adfm.200400106
– ident: e_1_2_5_34_1
  doi: 10.1038/bmt.2008.442
– ident: e_1_2_5_5_2
  doi: 10.1002/smll.201402038
– ident: e_1_2_5_14_2
  doi: 10.1096/fj.10-161497
– ident: e_1_2_5_19_3
  doi: 10.1002/cssc.201100181
– ident: e_1_2_5_11_1
  doi: 10.2174/156802608783790893
– ident: e_1_2_5_14_1
  doi: 10.1016/j.colsurfb.2012.01.003
– ident: e_1_2_5_29_2
  doi: 10.1016/j.brainres.2005.07.035
– ident: e_1_2_5_7_2
  doi: 10.1039/c0an00366b
– ident: e_1_2_5_9_1
  doi: 10.1021/acsami.6b05409
– ident: e_1_2_5_3_1
  doi: 10.1039/C4SC02638A
– ident: e_1_2_5_42_2
  doi: 10.1016/j.colsurfb.2017.04.014
– volume: 18
  start-page: 1066
  year: 1983
  ident: e_1_2_5_17_1
  publication-title: Mol. Biol.
– ident: e_1_2_5_1_1
  doi: 10.1039/C3CS60419E
– ident: e_1_2_5_19_2
  doi: 10.1021/jp0380226
– ident: e_1_2_5_25_1
  doi: 10.1016/S0142-9612(03)00343-0
– ident: e_1_2_5_11_2
  doi: 10.1002/anie.200801202
– ident: e_1_2_5_24_1
  doi: 10.1039/C3CS60174A
– ident: e_1_2_5_4_1
  doi: 10.1039/C4CC06323F
– ident: e_1_2_5_30_1
  doi: 10.1016/S0142-9612(02)00131-X
– ident: e_1_2_5_32_1
  doi: 10.1038/srep18162
– ident: e_1_2_5_36_1
  doi: 10.1016/0968-0004(91)90096-E
– ident: e_1_2_5_47_1
  doi: 10.3390/polym8020054
– ident: e_1_2_5_1_3
  doi: 10.1002/adma.201606407
– ident: e_1_2_5_44_1
  doi: 10.1039/c0cs00053a
– volume: 8
  start-page: 48086
  year: 2017
  ident: e_1_2_5_43_1
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.18256
– ident: e_1_2_5_7_1
  doi: 10.1002/anie.200805179
– ident: e_1_2_5_21_1
  doi: 10.1016/j.biomaterials.2006.03.025
– ident: e_1_2_5_1_5
  doi: 10.1039/c0cs00124d
– ident: e_1_2_5_37_1
  doi: 10.1186/1471-2121-11-25
– ident: e_1_2_5_6_1
  doi: 10.1002/smll.201402381
– ident: e_1_2_5_40_1
  doi: 10.1002/jbm.a.10008
– ident: e_1_2_5_12_1
  doi: 10.1002/smll.200700595
– ident: e_1_2_5_23_2
  doi: 10.1016/S0926-860X(02)00282-X
– ident: e_1_2_5_44_2
  doi: 10.1002/adom.201600162
– ident: e_1_2_5_23_3
  doi: 10.1016/j.apcatb.2016.02.017
– ident: e_1_2_5_44_3
  doi: 10.1021/cg800641s
– ident: e_1_2_5_46_1
  doi: 10.1126/science.1251141
– ident: e_1_2_5_1_2
  doi: 10.1038/srep21809
– ident: e_1_2_5_11_3
  doi: 10.1021/la503872h
– ident: e_1_2_5_28_1
– year: 2018
  ident: e_1_2_5_6_2
  publication-title: Nanoscale
– ident: e_1_2_5_12_2
  doi: 10.1016/j.biomaterials.2004.09.008
– ident: e_1_2_5_18_1
  doi: 10.1038/nrd4486
– ident: e_1_2_5_49_1
  doi: 10.1186/1471-2105-3-4
– ident: e_1_2_5_19_1
  doi: 10.1039/c1jm12259b
– ident: e_1_2_5_45_1
  doi: 10.1016/S1369-7021(11)70058-X
– ident: e_1_2_5_23_1
  doi: 10.1002/adfm.201102892
– ident: e_1_2_5_33_1
  doi: 10.4103/1673-5374.158352
– ident: e_1_2_5_8_1
  doi: 10.1002/adma.201001699
– ident: e_1_2_5_29_1
  doi: 10.1016/j.diff.2010.07.001
– ident: e_1_2_5_21_2
  doi: 10.1039/C4BM00382A
– ident: e_1_2_5_48_1
  doi: 10.1111/eos.12244
– ident: e_1_2_5_42_1
  doi: 10.1016/j.colsurfb.2016.04.007
– ident: e_1_2_5_11_4
  doi: 10.1016/j.tibtech.2014.11.002
– ident: e_1_2_5_37_2
  doi: 10.1016/j.bone.2006.09.006
– ident: e_1_2_5_1_4
  doi: 10.1002/anie.201403249
– ident: e_1_2_5_40_2
  doi: 10.1007/s12031-013-0109-2
– ident: e_1_2_5_22_2
  doi: 10.1007/s10439-016-1594-6
SSID ssj0001121283
Score 2.175812
Snippet Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adhesive bonding
Aspartic acid
biointerface
Biomedical materials
Cell adhesion
Cell adhesion & migration
cell proliferation
cooperative effect
Differentiation
Gene expression
Glycine
growth factors
Hydrogen bonding
Hydrogen storage
Interfaces
Lactic acid
Nanofabrication
Regeneration
Stability
stem cell differentiation
Stem cells
Substrates
Title bFGF and Poly‐RGD Cooperatively Establish Biointerface for Stem Cell Adhesion, Proliferation, and Differentiation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201700702
https://www.proquest.com/docview/2025838394
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEFdRGMgPSDx0GYvj1Mljta4bSJvQWKHjJUp80Sp17bSmD-OJn8Bv4SfxSzi-xElg3PYSRbZjyz6ffY5Pjj8j9JIKJpmkYQC2PQ1AHxN9WFkGO0yJgeRUFeZH--HR4GBC307jaafzrRG1tC6Lbf752nMlN5EqpIFc9SnZ_5CsrxQS4B3kC0-QMDz_ScbFeH9sw_2X8ysftnC8P4JpvryQltR7ftXfAxPQeJv01ZOaIOJS5dyyfb8v5Xl_VzvwhuJMateZsSv1XT5KWnRUAZ4jd5dK2ZBmxV9bRRKA_Ws73vfN1DGKM-ebPqoR-dElnS6dBtULkKU1OJ35Hk1ntfKQJvzgeF3nvpPuW-e8CBMT85LWaxysl4OARZZ7dltek-YW6biBRdbQ1l6X_aIKLLVsLs5nOoCPaV4jUiu96ke_Lxn_uaylCB4dvvH5t9AGga0J6aKN4YfJp0nt2QvBHDD8r74nFVvoDnndbqRtDdVbnOZGyVg6J_fQXbdFwUOLt_uoIxcP0G0TKsxXD9FKow4DILBG3fcvXwFvuIU37PGGm3jDgDes8YY13nCFty3cQtuWqfonrD1Ck_Heye5B4K7uCHiUUhIUAszEnDMO1qZgieQsFpGIWCgYKLRikCuSxyTlIWGpzMOwCGNFVSR4oqRMEho9Rt3FciGfIMyKkDKW8zgRglJCE5JHBck5rC2Ks5T0UFANYcYdr72-XmWeWUZukukhz_yQ99ArX_7CMrr8tuRmJZHMzfoV5BIdaQC97CFipPSXWrIWap7e5KNn6E49eTZRt7xcy-dgC5fFCwe-H0Gtqh4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELZQEYIF8SsKBTwgsRC1cZw4GUtLKT-tKmgRYokc-ywqtQ2iZejGI_CMPAm2k7YwICTGJPZJ8fnuPp3P3yF0QiUDBtR1NLanjo7HxFxWBqfClAxAUJXYg_ZWO2j26PWjP6smNHdhMn6IecLNWIb118bATUK6vGAN5XLYN7VZzFDWaC-8bKBNWEDL1YfeU2-RaHG1d7Z0nNo4A4d5fmVG3lgh5Z9CfganBeL8jltt4GlsoPUcMeJqpuJNtASjLbRiKzfFeBuNk8ZlA_ORxJ10MP18_7i7rONamr5Axuk9mOILjQBtsgmf91PDD_GquACs4Sq-n8AQ12Cg5ctnMJmzM9wxjXwUZFvjzIqu521UJpkid1CvcdGtNZ28k4IjvIgSJ5E6anPBhA7-koUgmC896TFXMu1fkoArwn0SCZewCLjrJq6vqPKkCBVAGFJvFxVG6Qj2EGaJSxnjwg-lpJTQkHAvIVxoVSvBIlJEzmwJY5HTjJtuF4M4I0gmsVnyeL7kRXQ6H_-SEWz8OrI000icG9pYfyXm4Ff_ZRERq6U_pMTVeutq_rT_n0nHaLXZbd3Gt1ftmwO0pt-HtpYnKqHC5PUNDjVMmSRH-Ub8Aid63n4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QCMQF8RTjmQMSFyrWNF3a49gobzQBQ4hLlSaOmDTWiY0DN34Cv5FfgpN2GxwQEse2iaXasf3JST4Tsse1AAHc9xDbcw_zMbOXlcGrCqNroLjJ3Eb71XXttM3PH8KHb7f4C36IccHNeoaL19bB-9ocTkhDpX7u2KNZwjLWYBCesVR5uK5n6vftx_akzuJjcHZsnOibNU8EYXXE3Vhlhz-F_MxNE8D5Hba6vJMskoUSMNJ6YeElMgW9ZTLrDm6qwQoZZMlJQmVP01befft8_7g5adJGnvehoPTuvtFjBICu1kSPOrmlh3gxUgFFtEpvh_BMG9BF-foJbOHsgLZsHx8Dxco4cKKbZReVYWHHVdJOju8ap17ZSMFTQcyZl2lM2lIJhblfiwiUCHWgA-FrgeElq0nDZMhi5TMRg_T9zA8NN4FWkQGIIh6skele3oN1QkXmcyGkCiOtOWc8YjLImFRoaaNEzCrEG6kwVSXLuG120U0LfmSWWpWnY5VXyP54fL_g1_h15NbIImnpZwP8yuy-L_5lhTBnpT-kpPXm1dn4aeM_k3bJXKuZpJdn1xebZB5fR-4kT7xFpocvr7CNIGWY7ZTr8Avcgd2n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=bFGF+and+Poly%E2%80%90RGD+Cooperatively+Establish+Biointerface+for+Stem+Cell+Adhesion%2C+Proliferation%2C+and+Differentiation&rft.jtitle=Advanced+materials+interfaces&rft.au=Jiang%2C+Nan&rft.au=Wang%2C+Yong&rft.au=Yin%2C+Yi%E2%80%90Xia&rft.au=Wei%2C+Rui%E2%80%90Peng&rft.date=2018-04-09&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=5&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.201700702&rft.externalDBID=10.1002%252Fadmi.201700702&rft.externalDocID=ADMI201700702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon