bFGF and Poly‐RGD Cooperatively Establish Biointerface for Stem Cell Adhesion, Proliferation, and Differentiation
Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile platform to connect biological entities and nonbiogenic materials. Existing nanofabrication approaches to create such a nanostructured bioin...
Saved in:
Published in | Advanced materials interfaces Vol. 5; no. 7 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
09.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile platform to connect biological entities and nonbiogenic materials. Existing nanofabrication approaches to create such a nanostructured biointerface involve in low stability of the functionalized nanolayer and simple functionalities that limit its applicability. Here, a stable nanolayered synthetic polypeptide (poly[LA‐co‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid, PRGD)/basic fibroblast growth factor (bFGF) biointerface is created via structural matching, charge interaction, and hydrogen bonding. The cooperative effect of the PRGD/bFGF biointerface shows multiple functionalities in promoting stem cell adhesion by 33% increase in cell adhesion to poly(d,l‐lactic acid) substrate as compared to experiments on bare substrate as a control. Moreover, the biointerface enhances proliferation by 40% in cell density, potential differentiation by 62%, and gene expression by 40 and 80% respectively as compared to the control samples. The fabricated biointerface may have applications in nerve regeneration, tissue repair, and stem cell‐based therapy.
A cooperative effect is developed by fabricating a stable nanolayered synthetic polypeptide (poly[LA‐co‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid)/basic fibroblast growth factor biointerface via structural matching and hydrogen bonding. Such a functionality‐stable biointerface shows multiple functionalities in promoting stem cell adhesion, proliferation in cell density, and differentiation. This biointerface may have applications in nerve regeneration, tissue repair, and cell therapy. |
---|---|
AbstractList | Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile platform to connect biological entities and nonbiogenic materials. Existing nanofabrication approaches to create such a nanostructured biointerface involve in low stability of the functionalized nanolayer and simple functionalities that limit its applicability. Here, a stable nanolayered synthetic polypeptide (poly[LA‐
co
‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid, PRGD)/basic fibroblast growth factor (bFGF) biointerface is created via structural matching, charge interaction, and hydrogen bonding. The cooperative effect of the PRGD/bFGF biointerface shows multiple functionalities in promoting stem cell adhesion by 33% increase in cell adhesion to poly(
d,l
‐lactic acid) substrate as compared to experiments on bare substrate as a control. Moreover, the biointerface enhances proliferation by 40% in cell density, potential differentiation by 62%, and gene expression by 40 and 80% respectively as compared to the control samples. The fabricated biointerface may have applications in nerve regeneration, tissue repair, and stem cell‐based therapy. Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile platform to connect biological entities and nonbiogenic materials. Existing nanofabrication approaches to create such a nanostructured biointerface involve in low stability of the functionalized nanolayer and simple functionalities that limit its applicability. Here, a stable nanolayered synthetic polypeptide (poly[LA‐co‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid, PRGD)/basic fibroblast growth factor (bFGF) biointerface is created via structural matching, charge interaction, and hydrogen bonding. The cooperative effect of the PRGD/bFGF biointerface shows multiple functionalities in promoting stem cell adhesion by 33% increase in cell adhesion to poly(d,l‐lactic acid) substrate as compared to experiments on bare substrate as a control. Moreover, the biointerface enhances proliferation by 40% in cell density, potential differentiation by 62%, and gene expression by 40 and 80% respectively as compared to the control samples. The fabricated biointerface may have applications in nerve regeneration, tissue repair, and stem cell‐based therapy. Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile platform to connect biological entities and nonbiogenic materials. Existing nanofabrication approaches to create such a nanostructured biointerface involve in low stability of the functionalized nanolayer and simple functionalities that limit its applicability. Here, a stable nanolayered synthetic polypeptide (poly[LA‐co‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid, PRGD)/basic fibroblast growth factor (bFGF) biointerface is created via structural matching, charge interaction, and hydrogen bonding. The cooperative effect of the PRGD/bFGF biointerface shows multiple functionalities in promoting stem cell adhesion by 33% increase in cell adhesion to poly(d,l‐lactic acid) substrate as compared to experiments on bare substrate as a control. Moreover, the biointerface enhances proliferation by 40% in cell density, potential differentiation by 62%, and gene expression by 40 and 80% respectively as compared to the control samples. The fabricated biointerface may have applications in nerve regeneration, tissue repair, and stem cell‐based therapy. A cooperative effect is developed by fabricating a stable nanolayered synthetic polypeptide (poly[LA‐co‐(Glc‐alt‐Lys)] and modified with arginine‐glycine‐aspartic acid)/basic fibroblast growth factor biointerface via structural matching and hydrogen bonding. Such a functionality‐stable biointerface shows multiple functionalities in promoting stem cell adhesion, proliferation in cell density, and differentiation. This biointerface may have applications in nerve regeneration, tissue repair, and cell therapy. |
Author | Jiang, Nan Dai, Hong‐Lian Li, Shi‐Pu Ying, Guo‐Liang Tian, Ge Wang, Yong Yang, Xiao‐Yu Wei, Rui‐Peng Yan, Qiong‐Jiao Li, Bin‐Bin Yin, Yi‐Xia Rijn, Patrick Qiu, Tong Busscher, Henk J. Yetisen, Ali K. |
Author_xml | – sequence: 1 givenname: Nan surname: Jiang fullname: Jiang, Nan organization: Harvard University – sequence: 2 givenname: Yong surname: Wang fullname: Wang, Yong organization: Wuhan University of Technology – sequence: 3 givenname: Yi‐Xia surname: Yin fullname: Yin, Yi‐Xia email: yinyixia@whut.edu.cn organization: Harvard Medical School – sequence: 4 givenname: Rui‐Peng surname: Wei fullname: Wei, Rui‐Peng organization: Wuhan University of Technology – sequence: 5 givenname: Guo‐Liang surname: Ying fullname: Ying, Guo‐Liang organization: Wuhan Institute of Technology – sequence: 6 givenname: Bin‐Bin surname: Li fullname: Li, Bin‐Bin organization: Wuhan University of Technology – sequence: 7 givenname: Tong surname: Qiu fullname: Qiu, Tong organization: Wuhan University of Technology – sequence: 8 givenname: Patrick surname: Rijn fullname: Rijn, Patrick organization: University of Groningen/University Medical Center Groningen – sequence: 9 givenname: Ge surname: Tian fullname: Tian, Ge organization: Wuhan University of Technology – sequence: 10 givenname: Qiong‐Jiao surname: Yan fullname: Yan, Qiong‐Jiao organization: Wuhan University of Technology – sequence: 11 givenname: Hong‐Lian surname: Dai fullname: Dai, Hong‐Lian organization: Wuhan University of Technology – sequence: 12 givenname: Henk J. surname: Busscher fullname: Busscher, Henk J. organization: University of Groningen/University Medical Center Groningen – sequence: 13 givenname: Shi‐Pu surname: Li fullname: Li, Shi‐Pu organization: Wuhan University of Technology – sequence: 14 givenname: Ali K. surname: Yetisen fullname: Yetisen, Ali K. organization: University of Birmingham – sequence: 15 givenname: Xiao‐Yu orcidid: 0000-0003-3454-3604 surname: Yang fullname: Yang, Xiao‐Yu email: xyyang@whut.edu.cn, xyyang@seas.harvard.edu organization: Harvard University |
BookMark | eNqFkE1PAjEQhhujiYhcPTfxKtgPlu4eEQRJMBI_zptuOw0lZYvtquHmT_A3-ktcwKgxMZ5m5s0882beI7Rf-hIQOqGkQwlh51IvbYcRKggRhO2hBqNZry14QvZ_9IeoFeOCEEIpoyzlDRSL0XiEZanxzLv1--vb7XiIB96vIMjKPoNb48tYycLZOMcX1tuygmCkAmx8wHcVLPEAnMN9PYdofXmGZ8E7a7b4ZtycHlpTC1BWdiseowMjXYTWZ22ih9Hl_eCqPb0ZTwb9aVvxrMvahe5RLpVQhCZapKBEornmgmoherzoScNkwjJFmchAUlrQxHQN1yo1AGna5U10uru7Cv7xCWKVL_xTKGvLnBGWpDytfeqtzm5LBR9jAJOvgl3KsM4pyTfZ5pts869sa6D7C1C22j5WBWnd31i2w16sg_U_Jnl_eD35Zj8Azl-Rkg |
CitedBy_id | crossref_primary_10_1080_09205063_2021_1980360 crossref_primary_10_1080_09205063_2023_2217063 crossref_primary_10_1002_jbm_a_37590 crossref_primary_10_1002_advs_201700876 crossref_primary_10_1016_j_pmatsci_2019_05_004 crossref_primary_10_1002_adhm_201901239 crossref_primary_10_1039_D0BM01454K crossref_primary_10_1039_C8SC01130C crossref_primary_10_1021_acsami_4c09269 crossref_primary_10_1021_acschemneuro_8b00452 crossref_primary_10_1002_admi_201901873 crossref_primary_10_1016_j_ceramint_2018_09_179 crossref_primary_10_1016_j_matdes_2022_111451 |
Cites_doi | 10.1016/j.colsurfb.2016.02.039 10.1021/nn506607x 10.1021/ja0686155 10.1002/jbm.a.35078 10.1016/j.nbd.2008.11.012 10.1038/nmat2442 10.1039/C4TB00555D 10.1016/j.biomaterials.2011.01.037 10.1039/C1EE02391H 10.1002/anie.201609180 10.1016/j.jcis.2011.10.018 10.1074/jbc.M706917200 10.1126/science.290.5497.1779 10.1146/annurev-chembioeng-060713-040042 10.1016/j.biomaterials.2011.02.025 10.1016/j.expneurol.2004.01.027 10.1088/0957-4484/20/10/105702 10.1021/acsami.5b00064 10.1002/adfm.200400106 10.1038/bmt.2008.442 10.1002/smll.201402038 10.1096/fj.10-161497 10.1002/cssc.201100181 10.2174/156802608783790893 10.1016/j.colsurfb.2012.01.003 10.1016/j.brainres.2005.07.035 10.1039/c0an00366b 10.1021/acsami.6b05409 10.1039/C4SC02638A 10.1016/j.colsurfb.2017.04.014 10.1039/C3CS60419E 10.1021/jp0380226 10.1016/S0142-9612(03)00343-0 10.1002/anie.200801202 10.1039/C3CS60174A 10.1039/C4CC06323F 10.1016/S0142-9612(02)00131-X 10.1038/srep18162 10.1016/0968-0004(91)90096-E 10.3390/polym8020054 10.1002/adma.201606407 10.1039/c0cs00053a 10.18632/oncotarget.18256 10.1002/anie.200805179 10.1016/j.biomaterials.2006.03.025 10.1039/c0cs00124d 10.1186/1471-2121-11-25 10.1002/smll.201402381 10.1002/jbm.a.10008 10.1002/smll.200700595 10.1016/S0926-860X(02)00282-X 10.1002/adom.201600162 10.1016/j.apcatb.2016.02.017 10.1021/cg800641s 10.1126/science.1251141 10.1038/srep21809 10.1021/la503872h 10.1016/j.biomaterials.2004.09.008 10.1038/nrd4486 10.1186/1471-2105-3-4 10.1039/c1jm12259b 10.1016/S1369-7021(11)70058-X 10.1002/adfm.201102892 10.4103/1673-5374.158352 10.1002/adma.201001699 10.1016/j.diff.2010.07.001 10.1039/C4BM00382A 10.1111/eos.12244 10.1016/j.colsurfb.2016.04.007 10.1016/j.tibtech.2014.11.002 10.1016/j.bone.2006.09.006 10.1002/anie.201403249 10.1007/s12031-013-0109-2 10.1007/s10439-016-1594-6 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/admi.201700702 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | 10_1002_admi_201700702 ADMI201700702 |
Genre | article |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAYXX ABJCF ABJNI ACCMX ADMLS AFKRA AFPKN ARAPS BENPR BFHJK BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ KB. M7S PDBOC PHGZM PHGZT PTHSS 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3942-bd613ac7c015d78ec75d3d371d7763b6af2a529c1279ea11b15f4f3dc8fee8843 |
ISSN | 2196-7350 |
IngestDate | Fri Jul 25 11:56:28 EDT 2025 Tue Jul 01 00:39:27 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 Sat Aug 24 00:51:27 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3942-bd613ac7c015d78ec75d3d371d7763b6af2a529c1279ea11b15f4f3dc8fee8843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3454-3604 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/admi.201700702 |
PQID | 2025838394 |
PQPubID | 2034582 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2025838394 crossref_primary_10_1002_admi_201700702 crossref_citationtrail_10_1002_admi_201700702 wiley_primary_10_1002_admi_201700702_ADMI201700702 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 9, 2018 |
PublicationDateYYYYMMDD | 2018-04-09 |
PublicationDate_xml | – month: 04 year: 2018 text: April 9, 2018 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2009; 44 2016 2017; 144 155 2004; 187 2015; 14 2017; 8 2015; 6 2007; 129 1991; 16 2015; 5 2009; 20 2009 2015; 34 7 2009 2015; 8 11 2015; 10 2016; 124 2006 2015; 27 3 2002; 3 2011; 32 1992 2011; 14 2014 2016 2017 2014 2011; 43 6 29 53 40 2015; 9 1983; 18 2010 2007; 11 40 2011 2004 2011 2012; 21 108 4 368 2016; 142 2008; 283 2008 2005; 4 26 2014; 43 2000; 290 2008 2008 2014 2015; 8 47 30 33 2003 2014 2014; 66 52 102 2010; 22 2009 2011; 48 136 2014; 2 2015 2018; 11 2012 2011; 93 25 2002; 23 2017; 56 2011 2016 2008; 40 4 8 2012 2002 2016; 22 236 188 2003 2011; 24 32 2005; 15 2012 2016; 5 44 2014; 50 2010 2005; 80 1056 2016; 8 2014; 344 e_1_2_5_27_1 e_1_2_5_27_2 e_1_2_5_23_3 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_25_2 e_1_2_5_23_1 e_1_2_5_44_3 e_1_2_5_46_1 e_1_2_5_23_2 e_1_2_5_44_2 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_21_2 e_1_2_5_42_2 e_1_2_5_29_1 e_1_2_5_29_2 e_1_2_5_40_3 e_1_2_5_42_1 e_1_2_5_40_2 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_11_4 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_7_2 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_5_2 e_1_2_5_11_3 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_1_5 e_1_2_5_5_1 e_1_2_5_11_2 e_1_2_5_1_4 e_1_2_5_1_3 e_1_2_5_3_1 e_1_2_5_19_4 e_1_2_5_1_2 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_19_3 e_1_2_5_19_2 Li R. (e_1_2_5_43_1) 2017; 8 e_1_2_5_30_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_22_2 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 Nechipurenko I. (e_1_2_5_17_1) 1983; 18 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_2 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 Geng W. (e_1_2_5_6_2) 2018 e_1_2_5_31_1 |
References_xml | – volume: 290 start-page: 1779 year: 2000 publication-title: Science – volume: 43 start-page: 30 year: 2014 publication-title: Chem. Soc. Rev. – volume: 22 start-page: 5164 year: 2010 publication-title: Adv. Mater. – volume: 142 start-page: 98 year: 2016 publication-title: Colloids Surf., B – volume: 144 155 start-page: 152 229 year: 2016 2017 publication-title: Colloids Surf., B Colloids Surf., B – volume: 15 start-page: 83 year: 2005 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 486 year: 2015 publication-title: Chem. Sci. – volume: 11 start-page: 2003 year: 2015 2018 publication-title: Small Nanoscale – volume: 66 52 102 start-page: 522 538 3734 year: 2003 2014 2014 publication-title: J. Biomed. Mater. Res. A J. Mol. Neurosci. J. Biomed. Mater. Res. A – volume: 43 6 29 53 40 start-page: 2385 21809 1606407 7789 2909 year: 2014 2016 2017 2014 2011 publication-title: Chem. Soc. Rev. Sci. Rep. Adv. Mater. Angew. Chem., Int. Ed. Chem. Soc. Rev. – volume: 48 136 start-page: 5406 1502 year: 2009 2011 publication-title: Angew. Chem., Int. Ed. Analyst – volume: 44 start-page: 133 year: 2009 publication-title: Bone Marrow Transplant. – volume: 22 236 188 start-page: 3083 17 351 year: 2012 2002 2016 publication-title: Adv. Funct. Mater. Appl. Catal. A‐Gen. Appl. Catal. B‐Environ. – volume: 129 start-page: 1496 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 5 44 start-page: 5540 1908 year: 2012 2016 publication-title: Energy Environ. Sci. Ann. Biomed. Eng. – volume: 24 32 start-page: 4385 4195 year: 2003 2011 publication-title: Biomaterials Biomaterials – volume: 23 start-page: 3871 year: 2002 publication-title: Biomaterials – volume: 14 start-page: 95 year: 2015 publication-title: Nat. Rev. Drug Discovery – volume: 3 start-page: 4 year: 2002 publication-title: BMC Bioinf. – volume: 4 26 start-page: 26 3055 year: 2008 2005 publication-title: Small Biomaterials – volume: 93 25 start-page: 8 1474 year: 2012 2011 publication-title: Colloids Surf., B FASEB J. – volume: 80 1056 start-page: 213 158 year: 2010 2005 publication-title: Differentiation Brain Res. – volume: 283 start-page: 5287 year: 2008 publication-title: J. Biol. Chem. – volume: 11 40 start-page: 25 382 year: 2010 2007 publication-title: BMC Cell Biol. Bone – volume: 344 start-page: 630 year: 2014 publication-title: Science – volume: 8 start-page: 25036 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 246 year: 1991 publication-title: Trends Biochem. Sci. – volume: 40 4 8 start-page: 2385 1589 4576 year: 2011 2016 2008 publication-title: Chem. Soc. Rev. Adv. Opt. Mater. Cryst. Growth Des. – volume: 5 start-page: 18162 year: 2015 publication-title: Sci. Rep. – volume: 18 start-page: 1066 year: 1983 publication-title: Mol. Biol. – volume: 10 start-page: 850 year: 2015 publication-title: Neural Regener. Res. – volume: 2 start-page: 4911 year: 2014 publication-title: J. Mater. Chem. B – volume: 6 start-page: 161 year: 2015 publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 21 108 4 368 start-page: 17283 4696 1452 128 year: 2011 2004 2011 2012 publication-title: J. Mater. Chem. J. Phys. Chem. B ChemSusChem J. Colloid Interf. Sci. – volume: 187 start-page: 319 year: 2004 publication-title: Exp. Neurol. – year: 1992 – volume: 32 start-page: 3404 year: 2011 publication-title: Biomaterials – volume: 56 start-page: 2497 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 88 year: 2011 publication-title: Mater. Today – volume: 8 47 30 33 start-page: 341 5666 14905 10 year: 2008 2008 2014 2015 publication-title: Curr. Top. Med. Chem. Angew. Chem., Int. Ed. Langmuir Trends Biotechnol. – volume: 34 7 start-page: 11 6698 year: 2009 2015 publication-title: Neurobiol. Dis. ACS Appl. Mater. Interfaces – volume: 8 start-page: 48086 year: 2017 publication-title: Oncotarget – volume: 9 start-page: 1767 year: 2015 publication-title: ACS Nano – volume: 8 11 start-page: 543 1097 year: 2009 2015 publication-title: Nat. Mater. Small – volume: 27 3 start-page: 4132 1066 year: 2006 2015 publication-title: Biomaterials Biomater. Sci. – volume: 124 start-page: 141 year: 2016 publication-title: Eur. J. Oral Sci. – volume: 50 start-page: 15407 year: 2014 publication-title: Chem. Commun. – volume: 20 start-page: 105702 year: 2009 publication-title: Nanotechnology – volume: 8 start-page: 54 year: 2016 publication-title: Polymers – ident: e_1_2_5_31_1 doi: 10.1016/j.colsurfb.2016.02.039 – ident: e_1_2_5_13_1 doi: 10.1021/nn506607x – ident: e_1_2_5_15_1 doi: 10.1021/ja0686155 – ident: e_1_2_5_40_3 doi: 10.1002/jbm.a.35078 – ident: e_1_2_5_27_1 doi: 10.1016/j.nbd.2008.11.012 – ident: e_1_2_5_5_1 doi: 10.1038/nmat2442 – ident: e_1_2_5_16_1 doi: 10.1039/C4TB00555D – ident: e_1_2_5_41_1 doi: 10.1016/j.biomaterials.2011.01.037 – ident: e_1_2_5_22_1 doi: 10.1039/C1EE02391H – ident: e_1_2_5_10_1 doi: 10.1002/anie.201609180 – ident: e_1_2_5_19_4 doi: 10.1016/j.jcis.2011.10.018 – ident: e_1_2_5_38_1 doi: 10.1074/jbc.M706917200 – ident: e_1_2_5_35_1 doi: 10.1126/science.290.5497.1779 – ident: e_1_2_5_2_1 doi: 10.1146/annurev-chembioeng-060713-040042 – ident: e_1_2_5_25_2 doi: 10.1016/j.biomaterials.2011.02.025 – ident: e_1_2_5_39_1 doi: 10.1016/j.expneurol.2004.01.027 – ident: e_1_2_5_20_1 doi: 10.1088/0957-4484/20/10/105702 – ident: e_1_2_5_27_2 doi: 10.1021/acsami.5b00064 – ident: e_1_2_5_26_1 doi: 10.1002/adfm.200400106 – ident: e_1_2_5_34_1 doi: 10.1038/bmt.2008.442 – ident: e_1_2_5_5_2 doi: 10.1002/smll.201402038 – ident: e_1_2_5_14_2 doi: 10.1096/fj.10-161497 – ident: e_1_2_5_19_3 doi: 10.1002/cssc.201100181 – ident: e_1_2_5_11_1 doi: 10.2174/156802608783790893 – ident: e_1_2_5_14_1 doi: 10.1016/j.colsurfb.2012.01.003 – ident: e_1_2_5_29_2 doi: 10.1016/j.brainres.2005.07.035 – ident: e_1_2_5_7_2 doi: 10.1039/c0an00366b – ident: e_1_2_5_9_1 doi: 10.1021/acsami.6b05409 – ident: e_1_2_5_3_1 doi: 10.1039/C4SC02638A – ident: e_1_2_5_42_2 doi: 10.1016/j.colsurfb.2017.04.014 – volume: 18 start-page: 1066 year: 1983 ident: e_1_2_5_17_1 publication-title: Mol. Biol. – ident: e_1_2_5_1_1 doi: 10.1039/C3CS60419E – ident: e_1_2_5_19_2 doi: 10.1021/jp0380226 – ident: e_1_2_5_25_1 doi: 10.1016/S0142-9612(03)00343-0 – ident: e_1_2_5_11_2 doi: 10.1002/anie.200801202 – ident: e_1_2_5_24_1 doi: 10.1039/C3CS60174A – ident: e_1_2_5_4_1 doi: 10.1039/C4CC06323F – ident: e_1_2_5_30_1 doi: 10.1016/S0142-9612(02)00131-X – ident: e_1_2_5_32_1 doi: 10.1038/srep18162 – ident: e_1_2_5_36_1 doi: 10.1016/0968-0004(91)90096-E – ident: e_1_2_5_47_1 doi: 10.3390/polym8020054 – ident: e_1_2_5_1_3 doi: 10.1002/adma.201606407 – ident: e_1_2_5_44_1 doi: 10.1039/c0cs00053a – volume: 8 start-page: 48086 year: 2017 ident: e_1_2_5_43_1 publication-title: Oncotarget doi: 10.18632/oncotarget.18256 – ident: e_1_2_5_7_1 doi: 10.1002/anie.200805179 – ident: e_1_2_5_21_1 doi: 10.1016/j.biomaterials.2006.03.025 – ident: e_1_2_5_1_5 doi: 10.1039/c0cs00124d – ident: e_1_2_5_37_1 doi: 10.1186/1471-2121-11-25 – ident: e_1_2_5_6_1 doi: 10.1002/smll.201402381 – ident: e_1_2_5_40_1 doi: 10.1002/jbm.a.10008 – ident: e_1_2_5_12_1 doi: 10.1002/smll.200700595 – ident: e_1_2_5_23_2 doi: 10.1016/S0926-860X(02)00282-X – ident: e_1_2_5_44_2 doi: 10.1002/adom.201600162 – ident: e_1_2_5_23_3 doi: 10.1016/j.apcatb.2016.02.017 – ident: e_1_2_5_44_3 doi: 10.1021/cg800641s – ident: e_1_2_5_46_1 doi: 10.1126/science.1251141 – ident: e_1_2_5_1_2 doi: 10.1038/srep21809 – ident: e_1_2_5_11_3 doi: 10.1021/la503872h – ident: e_1_2_5_28_1 – year: 2018 ident: e_1_2_5_6_2 publication-title: Nanoscale – ident: e_1_2_5_12_2 doi: 10.1016/j.biomaterials.2004.09.008 – ident: e_1_2_5_18_1 doi: 10.1038/nrd4486 – ident: e_1_2_5_49_1 doi: 10.1186/1471-2105-3-4 – ident: e_1_2_5_19_1 doi: 10.1039/c1jm12259b – ident: e_1_2_5_45_1 doi: 10.1016/S1369-7021(11)70058-X – ident: e_1_2_5_23_1 doi: 10.1002/adfm.201102892 – ident: e_1_2_5_33_1 doi: 10.4103/1673-5374.158352 – ident: e_1_2_5_8_1 doi: 10.1002/adma.201001699 – ident: e_1_2_5_29_1 doi: 10.1016/j.diff.2010.07.001 – ident: e_1_2_5_21_2 doi: 10.1039/C4BM00382A – ident: e_1_2_5_48_1 doi: 10.1111/eos.12244 – ident: e_1_2_5_42_1 doi: 10.1016/j.colsurfb.2016.04.007 – ident: e_1_2_5_11_4 doi: 10.1016/j.tibtech.2014.11.002 – ident: e_1_2_5_37_2 doi: 10.1016/j.bone.2006.09.006 – ident: e_1_2_5_1_4 doi: 10.1002/anie.201403249 – ident: e_1_2_5_40_2 doi: 10.1007/s12031-013-0109-2 – ident: e_1_2_5_22_2 doi: 10.1007/s10439-016-1594-6 |
SSID | ssj0001121283 |
Score | 2.175812 |
Snippet | Biointerface design is widely used to functionalize biomaterials with controllable physicochemical properties. Functionalized biointerface provides a versatile... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Adhesive bonding Aspartic acid biointerface Biomedical materials Cell adhesion Cell adhesion & migration cell proliferation cooperative effect Differentiation Gene expression Glycine growth factors Hydrogen bonding Hydrogen storage Interfaces Lactic acid Nanofabrication Regeneration Stability stem cell differentiation Stem cells Substrates |
Title | bFGF and Poly‐RGD Cooperatively Establish Biointerface for Stem Cell Adhesion, Proliferation, and Differentiation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201700702 https://www.proquest.com/docview/2025838394 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEFdRGMgPSDx0GYvj1Mljta4bSJvQWKHjJUp80Sp17bSmD-OJn8Bv4SfxSzi-xElg3PYSRbZjyz6ffY5Pjj8j9JIKJpmkYQC2PQ1AHxN9WFkGO0yJgeRUFeZH--HR4GBC307jaafzrRG1tC6Lbf752nMlN5EqpIFc9SnZ_5CsrxQS4B3kC0-QMDz_ScbFeH9sw_2X8ysftnC8P4JpvryQltR7ftXfAxPQeJv01ZOaIOJS5dyyfb8v5Xl_VzvwhuJMateZsSv1XT5KWnRUAZ4jd5dK2ZBmxV9bRRKA_Ws73vfN1DGKM-ebPqoR-dElnS6dBtULkKU1OJ35Hk1ntfKQJvzgeF3nvpPuW-e8CBMT85LWaxysl4OARZZ7dltek-YW6biBRdbQ1l6X_aIKLLVsLs5nOoCPaV4jUiu96ke_Lxn_uaylCB4dvvH5t9AGga0J6aKN4YfJp0nt2QvBHDD8r74nFVvoDnndbqRtDdVbnOZGyVg6J_fQXbdFwUOLt_uoIxcP0G0TKsxXD9FKow4DILBG3fcvXwFvuIU37PGGm3jDgDes8YY13nCFty3cQtuWqfonrD1Ck_Heye5B4K7uCHiUUhIUAszEnDMO1qZgieQsFpGIWCgYKLRikCuSxyTlIWGpzMOwCGNFVSR4oqRMEho9Rt3FciGfIMyKkDKW8zgRglJCE5JHBck5rC2Ks5T0UFANYcYdr72-XmWeWUZukukhz_yQ99ArX_7CMrr8tuRmJZHMzfoV5BIdaQC97CFipPSXWrIWap7e5KNn6E49eTZRt7xcy-dgC5fFCwe-H0Gtqh4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELZQEYIF8SsKBTwgsRC1cZw4GUtLKT-tKmgRYokc-ywqtQ2iZejGI_CMPAm2k7YwICTGJPZJ8fnuPp3P3yF0QiUDBtR1NLanjo7HxFxWBqfClAxAUJXYg_ZWO2j26PWjP6smNHdhMn6IecLNWIb118bATUK6vGAN5XLYN7VZzFDWaC-8bKBNWEDL1YfeU2-RaHG1d7Z0nNo4A4d5fmVG3lgh5Z9CfganBeL8jltt4GlsoPUcMeJqpuJNtASjLbRiKzfFeBuNk8ZlA_ORxJ10MP18_7i7rONamr5Axuk9mOILjQBtsgmf91PDD_GquACs4Sq-n8AQ12Cg5ctnMJmzM9wxjXwUZFvjzIqu521UJpkid1CvcdGtNZ28k4IjvIgSJ5E6anPBhA7-koUgmC896TFXMu1fkoArwn0SCZewCLjrJq6vqPKkCBVAGFJvFxVG6Qj2EGaJSxnjwg-lpJTQkHAvIVxoVSvBIlJEzmwJY5HTjJtuF4M4I0gmsVnyeL7kRXQ6H_-SEWz8OrI000icG9pYfyXm4Ff_ZRERq6U_pMTVeutq_rT_n0nHaLXZbd3Gt1ftmwO0pt-HtpYnKqHC5PUNDjVMmSRH-Ub8Aid63n4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QCMQF8RTjmQMSFyrWNF3a49gobzQBQ4hLlSaOmDTWiY0DN34Cv5FfgpN2GxwQEse2iaXasf3JST4Tsse1AAHc9xDbcw_zMbOXlcGrCqNroLjJ3Eb71XXttM3PH8KHb7f4C36IccHNeoaL19bB-9ocTkhDpX7u2KNZwjLWYBCesVR5uK5n6vftx_akzuJjcHZsnOibNU8EYXXE3Vhlhz-F_MxNE8D5Hba6vJMskoUSMNJ6YeElMgW9ZTLrDm6qwQoZZMlJQmVP01befft8_7g5adJGnvehoPTuvtFjBICu1kSPOrmlh3gxUgFFtEpvh_BMG9BF-foJbOHsgLZsHx8Dxco4cKKbZReVYWHHVdJOju8ap17ZSMFTQcyZl2lM2lIJhblfiwiUCHWgA-FrgeElq0nDZMhi5TMRg_T9zA8NN4FWkQGIIh6skele3oN1QkXmcyGkCiOtOWc8YjLImFRoaaNEzCrEG6kwVSXLuG120U0LfmSWWpWnY5VXyP54fL_g1_h15NbIImnpZwP8yuy-L_5lhTBnpT-kpPXm1dn4aeM_k3bJXKuZpJdn1xebZB5fR-4kT7xFpocvr7CNIGWY7ZTr8Avcgd2n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=bFGF+and+Poly%E2%80%90RGD+Cooperatively+Establish+Biointerface+for+Stem+Cell+Adhesion%2C+Proliferation%2C+and+Differentiation&rft.jtitle=Advanced+materials+interfaces&rft.au=Jiang%2C+Nan&rft.au=Wang%2C+Yong&rft.au=Yin%2C+Yi%E2%80%90Xia&rft.au=Wei%2C+Rui%E2%80%90Peng&rft.date=2018-04-09&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=5&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.201700702&rft.externalDBID=10.1002%252Fadmi.201700702&rft.externalDocID=ADMI201700702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |