Untargeted Metabolomics Reveals Distinct Anthocyanin Profiles in Napier Grass (Pennisetum purpureum Schumach.) Cultivars
Plant secondary metabolites regulate plant growth and serve as valuable pharmaceutical resources. Napier grass (Pennisetum purpureum Schumach.), a Poaceae species, shows potential as a functional food. In this study, we employed high-resolution mass spectrometry combined with a data-independent acqu...
Saved in:
Published in | Foods Vol. 14; no. 15; p. 2582 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.07.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Plant secondary metabolites regulate plant growth and serve as valuable pharmaceutical resources. Napier grass (Pennisetum purpureum Schumach.), a Poaceae species, shows potential as a functional food. In this study, we employed high-resolution mass spectrometry combined with a data-independent acquisition (DIA) strategy for the untargeted detection of anthocyanins, a group of secondary metabolites, in napier grass. Clear MS2 fragmentation patterns were observed for anthocyanins, characterized by diagnostic aglycone signals and sequential losses of hexosyl (C6H10O5), deoxyhexosyl (C6H10O4), pentosyl (C5H8O4), and p-coumaroyl groups (C9H8O3). Based on matching with authentic standards and an in-house database, ten anthocyanins were identified, seven of which were newly reported in napier grass. In a single-laboratory validation analysis, both absolute and semi-quantitative results reliably reflected the specific distribution of metabolites across different cultivars and plant organs. The purple cultivar (TS5) exhibited the highest anthocyanin content, with the cyanidin 3-O-glucoside content reaching 5.0 ± 0.5 mg/g, whereas the green cultivar (TS2), despite its less pigmented appearance, contained substantial amounts of malvidin 3-O-arabinoside (0.7 ± <0.1 mg/g). Flavonoid profiling revealed that monoglycosylated anthocyanins were the dominant forms in floral tissues. These findings shed light on napier grass metabolism and support future Poaceae breeding and functional food development. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods14152582 |