Development of PYMUS+ Code for Quantitative Evaluation of Nuclear Material Accounting (NMA) System

The Nuclear Material Accounting (NMA) system is one of the main safeguards measures to detect the existence of nuclear material diversion. It has become more important for large reprocessing facilities to apply Near Real Time Accountancy (NRTA) system based on NMA and statistical techniques to meet...

Full description

Saved in:
Bibliographic Details
Published inScience and technology of nuclear installations Vol. 2019; no. 2019; pp. 1 - 11
Main Authors Ahn, Seong-Kyu, Park, Se Hwan, Shin, Hee-Sung, Won, Byung Hee
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2019
Hindawi
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Nuclear Material Accounting (NMA) system is one of the main safeguards measures to detect the existence of nuclear material diversion. It has become more important for large reprocessing facilities to apply Near Real Time Accountancy (NRTA) system based on NMA and statistical techniques to meet quantitative and timeliness goals. It is also important to quantitatively evaluate the performance of NMA system including NRTA from the standpoints of Safeguards and Security by Design (SSBD) prior to construction of nuclear-material-handling facilities. Such evaluation improves safeguards effectiveness and efficiency. Modeling and Simulation (M&S) work is a good way to evaluate performance for various NMA systems and to determine the optimal one among different options. For these purposes, in the present study, the PYroprocessing Material flow and MUF Uncertainty Simulation+ (PYMUS+) code, which uses evaluation algorithms to calculate many safeguards factors such as MUF uncertainty, detection probability, and others, was developed. According to a previous report, the PYMUS code, the predecessor of PYMUS+, can calculate MUF uncertainties only for a fixed model having 10 tHM/year, whereas the PYMUS+ code can additionally calculate detection probabilities according to diverse nuclear diversion scenarios as well as MUF uncertainties. The most important feature of the PYMUS+ code is its capability to evaluate many process and NMA system model options that a user wants to evaluate. Furthermore, a user can make a static process model having simplicity and a matching NMA model based on the PYMUS+ code regardless of facility throughput and is not even required to have professional programming knowledge. In the present work, some intercomparative studies were conducted to verify the M&S techniques applied in this code. It is expected that this code will be a useful tool for evaluation of NRTA system of pyroprocessing and other reprocessing facilities.
ISSN:1687-6075
1687-6083
DOI:10.1155/2019/8479181