Codimension-2 defects and higher symmetries in (3+1)D topological phases

(3+1)D topological phases of matter can host a broad class of non-trivial topological defects of codimension-1, 2, and 3, of which the well-known point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emerg...

Full description

Saved in:
Bibliographic Details
Published inSciPost physics Vol. 14; no. 4; p. 065
Main Authors Barkeshli, Maissam, Chen, Yu-An, Huang, Sheng-Jie, Kobayashi, Ryohei, Tantivasadakarn, Nathanan, Zhu, Guanyu
Format Journal Article
LanguageEnglish
Published Netherlands Stichting SciPost 01.04.2023
SciPost
Online AccessGet full text

Cover

Loading…
More Information
Summary:(3+1)D topological phases of matter can host a broad class of non-trivial topological defects of codimension-1, 2, and 3, of which the well-known point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emergent higher symmetry. This plays a crucial role both in the classification of phases of matter and the possible fault-tolerant logical operations in topological quantum error-correcting codes. In this paper, we study several examples of such higher codimension defects from distinct perspectives. We mainly study a class of invertible codimension-2 topological defects, which we refer to as twist strings. We provide a number of general constructions for twist strings, in terms of gauging lower dimensional invertible phases, layer constructions, and condensation defects. We study some special examples in the context of \mathbb{Z}_2 ℤ 2 gauge theory with fermionic charges, in \mathbb{Z}_2 \times \mathbb{Z}_2 ℤ 2 × ℤ 2 gauge theory with bosonic charges, and also in non-Abelian discrete gauge theories based on dihedral ( D_n D n ) and alternating ( A_6 A 6 ) groups. The intersection between twist strings and Abelian flux loops sources Abelian point charges, which defines an H^4 H 4 cohomology class that characterizes part of an underlying 3-group symmetry of the topological order. The equations involving background gauge fields for the 3-group symmetry have been explicitly written down for various cases. We also study examples of twist strings interacting with non-Abelian flux loops (defining part of a non-invertible higher symmetry), examples of non-invertible codimension-2 defects, and examples of the interplay of codimension-2 defects with codimension-1 defects. We also find an example of geometric, not fully topological, twist strings in (3+1)D A_6 A 6 gauge theory.
Bibliography:USDOE
SC0012704
ISSN:2542-4653
2542-4653
DOI:10.21468/SciPostPhys.14.4.065