Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications
Photocatalysis has attracted much attention in recent years due to its potential in solving energy and environmental issues. Even though numerous achievements have been made, the photocatalytic systems developed to date are still far from practical applications due to the low efficiency and poor dur...
Saved in:
Published in | Journal of materials science & technology Vol. 33; no. 1; pp. 1 - 22 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Photocatalysis has attracted much attention in recent years due to its potential in solving energy and environmental issues. Even though numerous achievements have been made, the photocatalytic systems developed to date are still far from practical applications due to the low efficiency and poor durability. Efficient light absorption and charge separation are two of the key factors for the exploration of high performance photocatalytic systems, which is generally difficult to be obtained in a single photocata- lyst. The combination of various materials to form heterojunctions provides an effective way to better harvest solar energy and to facilitate charge separation and transfer, thus enhancing the photocatalytic activity and stability. This review concisely summarizes the recent development of visible light respon- sive heterojunctions, including the preparation and performances of semiconductor/semiconductor junctions, semiconductor/cocatalyst junctions, semiconductor/metal junctions, semiconductor/non- metal junctions, and surface heterojunctions, and their mechanism for enhanced light harvesting and charge separation/transfer. |
---|---|
Bibliography: | 21-1315/TG Photocatalysis has attracted much attention in recent years due to its potential in solving energy and environmental issues. Even though numerous achievements have been made, the photocatalytic systems developed to date are still far from practical applications due to the low efficiency and poor durability. Efficient light absorption and charge separation are two of the key factors for the exploration of high performance photocatalytic systems, which is generally difficult to be obtained in a single photocata- lyst. The combination of various materials to form heterojunctions provides an effective way to better harvest solar energy and to facilitate charge separation and transfer, thus enhancing the photocatalytic activity and stability. This review concisely summarizes the recent development of visible light respon- sive heterojunctions, including the preparation and performances of semiconductor/semiconductor junctions, semiconductor/cocatalyst junctions, semiconductor/metal junctions, semiconductor/non- metal junctions, and surface heterojunctions, and their mechanism for enhanced light harvesting and charge separation/transfer. Heterojunction;Photocatalysis;Water splitting;Carbon dioxide reduction;Organic pollutant degradation;Visible light |
ISSN: | 1005-0302 1941-1162 |
DOI: | 10.1016/j.jmst.2016.11.017 |