The ghost of outcrossing past in downy brome, an inbreeding annual grass

We investigated the frequency of outcrossing in downy brome (Bromus tectorum L.), a cleistogamous weedy annual grass, in both common garden and wild populations, using microsatellite and single nucleotide polymorphic (SNP) markers. In the common garden study, 25 lines with strongly contrasting genot...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of heredity Vol. 104; no. 4; pp. 476 - 490
Main Authors Meyer, Susan E, Ghimire, Sudeep, Decker, Samuel, Merrill, Keith R, Coleman, Craig E
Format Journal Article
LanguageEnglish
Published United States Oxford Publishing Limited (England) 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigated the frequency of outcrossing in downy brome (Bromus tectorum L.), a cleistogamous weedy annual grass, in both common garden and wild populations, using microsatellite and single nucleotide polymorphic (SNP) markers. In the common garden study, 25 lines with strongly contrasting genotypes were planted in close proximity. We fingerprinted 10 seed progeny from 8 individuals of each line and detected 15 first-generation heterozygotes for a t-value (corrected for cryptic crosses) of 0.0082. Different genotypes were significantly overrepresented as maternal versus paternal parents of heterozygotes, suggesting gender-function-dependent genetic control of outcrossing rates. In 4 wild populations (>300 individuals each), expected heterozygosity ranged from 0.149 to 0.336, whereas t-values ranged from 0.0027 to 0.0133, indicating high levels of both genetic diversity and inbreeding. Up to a third of the individuals in each population belonged to groups with identical or nearly identical SNP genotypes, whereas many of the remaining individuals were members of loose clusters of apparently related plants that probably represent descendants from past outcrossing events. Strict inbreeding in some lineages within a population with occasional outcrossing in others may be related to positive selection on adaptive syndromes associated with specific inbreeding lineages, or possibly to among-lineage differences in genetic regulation of outcrossing.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1503
1465-7333
DOI:10.1093/jhered/est019