Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract

[Display omitted] A green approach was envisaged for the rapid synthesis of stable silver nanoparticles in an aqueous medium using phenolic rich ethanolic bark extract from D. indica with marked free radical scavenging and reducing ability. Biosynthesis of silver nanoparticles (AgNPs) was confirmed...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 496; pp. 513 - 521
Main Authors Mohanty, Alfa S., Jena, Bhabani S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] A green approach was envisaged for the rapid synthesis of stable silver nanoparticles in an aqueous medium using phenolic rich ethanolic bark extract from D. indica with marked free radical scavenging and reducing ability. Biosynthesis of silver nanoparticles (AgNPs) was confirmed and characterized by using UV–visible spectroscopy, particle size analyzer, X-ray diffractometry (XRD), Transmission Electron Microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FT-IR). Bio-reduction of Ag+ was confirmed with the appearance of golden yellow coloration within 5–10min at 45°C with maximum absorbance at 421nm. XRD analysis of AgNPs indicated the crystalline nature of metallic Ag. As analyzed by TEM, AgNPs were found to be spherical in shape, well dispersed and size varied from 15 to 35nm and dynamic light scattering (DLS) studies showed the average particle size of 29nm with polydispersity index (PDI) of 0.280. Synthesized AgNPs were showing surface functionalization as revealed through FTIR studies. These AgNPs were observed to be highly stable at room temperature (28±2°C) for more than 3months, thereby indicating the ethanolic extract of D. indica was a reducing as well as a capping agent for stabilization of AgNPs. Moreover, these green synthesized AgNPs showed enhanced free radical scavenging and excellent catalytic activities when used in the reduction of 4-nitrophenol and methylene blue dye, at room temperature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2017.02.045