Optimization of a nitrogen fertilizer application scheme for spring maize in full-film double-ridge furrow in Longzhong, China

Full-film double-ridge furrow sowing technology (FDRFST) and nitrogen (N) management are crucial for sustainable agricultural development. To investigate the N fertilizer application scheme for spring maize with high yield, precipitation water productivity (PWP), and N use efficiency (NUE) under the...

Full description

Saved in:
Bibliographic Details
Published inAgricultural water management Vol. 290; p. 108580
Main Authors Liu, Yu, Li, Shilei, Liu, Yanxin, Shen, Hongzheng, Huang, Tingting, Ma, Xiaoyi
Format Journal Article
LanguageEnglish
Published Elsevier 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Full-film double-ridge furrow sowing technology (FDRFST) and nitrogen (N) management are crucial for sustainable agricultural development. To investigate the N fertilizer application scheme for spring maize with high yield, precipitation water productivity (PWP), and N use efficiency (NUE) under the FDRFST, a two-year field experiment was carried out in a rainfed area of Longzhong (LZ). Treatments included two types of N fertilization (common urea [U] and controlled release urea [CU]), three application rates (180, 225, and 270 kg hm⁻²), and the conditions of no N fertilizer application and no plastic film mulching. The results showed that the temperature-increase effect of PM on the soil between 2021 and 2022 was concentrated for 0–90 days, with average values of the 5 cm soil temperature increasing by 4.15 and 3.58 ºC, respectively. However, the N fertilizer application rate had negligible effects on soil temperature. Plastic film mulching (PM) required temperature-increase compensation, particularly during the sowing–emergence stage, with a 1.68 compensation coefficient. Based on the simulation results of the modified DNDC model, the recommended application rate of CU (180 kg hm⁻²) for spring maize in LZ increased the average yield, PWP, and NUE by 15.8%, 16.0%, and 36.4% from 1981 to 2020, respectively, compared to U treatments. Our results provide a theoretical basis for N management in spring maize production in LZ and offer critical insights for improving the DNDC model under PM conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-3774
1873-2283
DOI:10.1016/j.agwat.2023.108580