Co-precipitation synthesis and characterization of NiO-Ce0.8Sm0.2O1.9 nanocomposite powders: effect of precipitation agents

NiO-Ce0.8Sm0.2O1.9 (NiO-SDC) nanocomposite powders applied as promising anode material for low-temperature solid oxide fuel cells (SOFCs) were synthesized by hydroxide co-precipitation method using NH3 x H2O, NaOH and NH3 x H2O + NaOH as precipitation agents. The crystal phases, morphologies and sin...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanoscience and nanotechnology Vol. 11; no. 3; p. 2336
Main Authors Ding, Changsheng, Lin, Hongfei, Sato, Kazuhisa, Hashida, Toshiyuki
Format Journal Article
LanguageEnglish
Published United States 01.03.2011
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:NiO-Ce0.8Sm0.2O1.9 (NiO-SDC) nanocomposite powders applied as promising anode material for low-temperature solid oxide fuel cells (SOFCs) were synthesized by hydroxide co-precipitation method using NH3 x H2O, NaOH and NH3 x H2O + NaOH as precipitation agents. The crystal phases, morphologies and sintering behavior of the synthesized NiO-SDC nanocomposite powders were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and sintering experiments. The effect of precipitation agents on the synthesis of the NiO-SDC nanocomposite powders was discussed. Results show that different precipitation agents influence greatly the synthesis and characteristics of the NiO-SDC nanocomposite powders. The NiO-SDC nanocomposite powders synthesized with NH3 x H2O deviate from the original composition due to the loss of Ni. The loss of Ni is avoided and nano-sized NiO-SDC composite powders are synthesized, when NaOH and NH3 x H2O + NaOH are used as precipitation agents. The NiO-SDC nanocomposite powders can be synthesized at relatively low temperature using NH3 x H2O + NaOH as precipitation agent, and the synthesized NiO-SDC nanocomposite powders show good sintering characteristics.
ISSN:1533-4880
DOI:10.1166/jnn.2011.3122