Impact of the contact metallization on the performance of photoconductive THz antennas

Both AuGe based alloys and Ti/Au metal layer stacks are widely used as ohmic metal contacts for photoconductive THz antennas made of low temperature grown GaAs. Here, we present the first systematic comparison between these two metallization types. A series of antennas of both kinds is excited by fe...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 16; no. 24; pp. 19695 - 19705
Main Authors Vieweg, N, Mikulics, M, Scheller, M, Ezdi, K, Wilk, R, Hübers, H W, Koch, M
Format Journal Article
LanguageEnglish
Published United States 24.11.2008
Online AccessGet full text

Cover

Loading…
More Information
Summary:Both AuGe based alloys and Ti/Au metal layer stacks are widely used as ohmic metal contacts for photoconductive THz antennas made of low temperature grown GaAs. Here, we present the first systematic comparison between these two metallization types. A series of antennas of both kinds is excited by femtosecond laser pulses and by the emission from two diode lasers, i.e. we test the structures as pulsed THz emitters and as photomixers. In both cases, coherent and incoherent detection schemes are employed. We find that the power emitted from the antennas with AuGe metallization is 50% higher than that of antennas with a Ti/Au metal layer. From a comparison with a photomixer model we conclude that the higher output power results from a lower contact resistance of the AuGe contacts leading to an increased current flow. However, Ti/Au contacts have a higher thermal stability which might be advantageous if high system stability is called for.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.16.019695