Appropriate loads for peak-power during resisted sprinting on a non-motorized treadmill

The purpose of this study was to determine the load which allows the highest peak power for resisted sprinting on a non-motorized treadmill and to determine if other variables are related to individual differences. Thirty college students were tested for vertical jump, vertical jump peak and mean po...

Full description

Saved in:
Bibliographic Details
Published inJournal of human kinetics Vol. 38; pp. 161 - 167
Main Authors Andre, Matthew J, Fry, Andrew C, Lane, Michael T
Format Journal Article
LanguageEnglish
Published Poland Akademia Wychowania Fizycznego w Katowicach 2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The purpose of this study was to determine the load which allows the highest peak power for resisted sprinting on a non-motorized treadmill and to determine if other variables are related to individual differences. Thirty college students were tested for vertical jump, vertical jump peak and mean power, 10 m sprint, 20 m sprint, leg press 1 RM, leg press 1 RM relative to body weight, leg press 1 RM relative to lean body mass, leg press 1 RM power, and leg press power at 80% of 1 RM. Participants performed eight resisted sprints on a non-motorized treadmill, with increasing relative loads expressed as percent of body weight. Sprint peak power was measured for each load. Pearson correlations were used to determine if relationships between the sprint peak power load and the other variables were significant. The sprint peak power load had a mode of 35% with 73% of all participants having a relative sprint peak power load between 25-35%. Significant correlations occurred between sprint peak power load and body weight, lean body mass, vertical jump peak and mean power, leg press 1 RM, leg press 1 RM relative to lean body mass, leg press 1 RM power, and leg press power at 80% of 1 RM (r = 0.44, 0.43, 0.39, 0.37, 0.47, 0.39, 0.46, and 0.47, respectively). Larger, stronger, more powerful athletes produced peak power at a higher relative load during resisted sprinting on a non-motorized treadmill.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authors submitted their contribution of the article to the editorial board.
ISSN:1640-5544
1899-7562
DOI:10.2478/hukin-2013-0056