Multiple Model-Based Synchronization Approaches for Time Delayed Slaving Data in a Space Launch Vehicle Tracking System

Due to the inherent characteristics of the flight mission of a space launch vehicle (SLV), which is required to fly over very large distances and have very high fault tolerances, in general, SLV tracking systems (TSs) comprise multiple heterogeneous sensors such as radars, GPS, INS, and electrooptic...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2016; no. 2016; pp. 1 - 12
Main Authors Song, Haryong, Choi, Yongtae
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2016
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to the inherent characteristics of the flight mission of a space launch vehicle (SLV), which is required to fly over very large distances and have very high fault tolerances, in general, SLV tracking systems (TSs) comprise multiple heterogeneous sensors such as radars, GPS, INS, and electrooptical targeting systems installed over widespread areas. To track an SLV without interruption and to hand over the measurement coverage between TSs properly, the mission control system (MCS) transfers slaving data to each TS through mission networks. When serious network delays occur, however, the slaving data from the MCS can lead to the failure of the TS. To address this problem, in this paper, we propose multiple model-based synchronization (MMS) approaches, which take advantage of the multiple motion models of an SLV. Cubic spline extrapolation, prediction through an α-β-γ filter, and a single model Kalman filter are presented as benchmark approaches. We demonstrate the synchronization accuracy and effectiveness of the proposed MMS approaches using the Monte Carlo simulation with the nominal trajectory data of Korea Space Launch Vehicle-I.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1024-123X
1563-5147
DOI:10.1155/2016/9319282