A stochastic operational planning model for a zero emission building with emission compensation

The primary objective of Zero Emission Buildings (ZEBs) is to achieve net zero emission over the buildings’ lifetime. To achieve this goal, accurate cost-effective emission compensation is needed during the operational phase. This paper presents a stochastic planning model comprising an emission inv...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 302; p. 117415
Main Authors Thorvaldsen, Kasper Emil, Korpås, Magnus, Lindberg, Karen Byskov, Farahmand, Hossein
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2021
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2021.117415

Cover

Abstract The primary objective of Zero Emission Buildings (ZEBs) is to achieve net zero emission over the buildings’ lifetime. To achieve this goal, accurate cost-effective emission compensation is needed during the operational phase. This paper presents a stochastic planning model comprising an emission inventory for the operation of ZEBs. The operational planning methodology uses stochastic dynamic programming (SDP) to analyze and represent the expected future cost curve (EFCC) for operation based on the electricity price and accumulated CO2eq-inventory during the year. Failing to compensate for net zero emission makes the leftover amount subject to a penalty cost at the end of the year. This renders the overall problem multi-objective optimization including emission compensation and cost of operation. The model is applied to a case study of a Norwegian building, tested for a range of penalty costs for leftover CO2eq-inventory. The results show that, for a ZEB, including emission compensation demonstrates a significant impact on the operation of the building. The penalty cost puts a limit on how much the operational cost increase for additional compensation should be, influencing the end CO2eq-inventory. Increasing penalty costs decreases the end inventory, and a penalty cost of 10 EURkgCO2eq resulted in zero emission. The case achieving zero emission had an operational cost increase of 4.8% compared to operating without a penalty cost. This shows the importance of accounting for emissions during the operation of a ZEB, and the value of having an operational strategy that presents the future impact of operation. •We look at CO2eq-emission inventory for operating a zero emission building.•We find the operational strategy for a building with emission compensation.•We investigate the impact of varying penalty cost for leftover emission.•We look at how finer resolution of CO2eq-intensity affects flexibility use.•We compare the operational strategy for a Norwegian and Danish case.
AbstractList The primary objective of Zero Emission Buildings (ZEBs) is to achieve net zero emission over the buildings’ lifetime. To achieve this goal, accurate cost-effective emission compensation is needed during the operational phase. This paper presents a stochastic planning model comprising an emission inventory for the operation of ZEBs. The operational planning methodology uses stochastic dynamic programming (SDP) to analyze and represent the expected future cost curve (EFCC) for operation based on the electricity price and accumulated CO2eq-inventory during the year. Failing to compensate for net zero emission makes the leftover amount subject to a penalty cost at the end of the year. This renders the overall problem multi-objective optimization including emission compensation and cost of operation. The model is applied to a case study of a Norwegian building, tested for a range of penalty costs for leftover CO2eq-inventory. The results show that, for a ZEB, including emission compensation demonstrates a significant impact on the operation of the building. The penalty cost puts a limit on how much the operational cost increase for additional compensation should be, influencing the end CO2eq-inventory. Increasing penalty costs decreases the end inventory, and a penalty cost of 10 EURkgCO2eq resulted in zero emission. The case achieving zero emission had an operational cost increase of 4.8% compared to operating without a penalty cost. This shows the importance of accounting for emissions during the operation of a ZEB, and the value of having an operational strategy that presents the future impact of operation. •We look at CO2eq-emission inventory for operating a zero emission building.•We find the operational strategy for a building with emission compensation.•We investigate the impact of varying penalty cost for leftover emission.•We look at how finer resolution of CO2eq-intensity affects flexibility use.•We compare the operational strategy for a Norwegian and Danish case.
The primary objective of Zero Emission Buildings (ZEBs) is to achieve net zero emission over the buildings’ lifetime. To achieve this goal, accurate cost-effective emission compensation is needed during the operational phase. This paper presents a stochastic planning model comprising an emission inventory for the operation of ZEBs. The operational planning methodology uses stochastic dynamic programming (SDP) to analyze and represent the expected future cost curve (EFCC) for operation based on the electricity price and accumulated CO2eq-inventory during the year. Failing to compensate for net zero emission makes the leftover amount subject to a penalty cost at the end of the year. This renders the overall problem multi-objective optimization including emission compensation and cost of operation. The model is applied to a case study of a Norwegian building, tested for a range of penalty costs for leftover CO2eq-inventory. The results show that, for a ZEB, including emission compensation demonstrates a significant impact on the operation of the building. The penalty cost puts a limit on how much the operational cost increase for additional compensation should be, influencing the end CO2eq-inventory. Increasing penalty costs decreases the end inventory, and a penalty cost of 10 EURkgCO2eq resulted in zero emission. The case achieving zero emission had an operational cost increase of 4.8% compared to operating without a penalty cost. This shows the importance of accounting for emissions during the operation of a ZEB, and the value of having an operational strategy that presents the future impact of operation.
ArticleNumber 117415
Author Thorvaldsen, Kasper Emil
Lindberg, Karen Byskov
Farahmand, Hossein
Korpås, Magnus
Author_xml – sequence: 1
  givenname: Kasper Emil
  orcidid: 0000-0003-2279-1256
  surname: Thorvaldsen
  fullname: Thorvaldsen, Kasper Emil
  email: kasper.e.thorvaldsen@ntnu.no
  organization: Department of Electric Power Engineering, Norwegian University of Science and Technology, Norway
– sequence: 2
  givenname: Magnus
  surname: Korpås
  fullname: Korpås, Magnus
  organization: Department of Electric Power Engineering, Norwegian University of Science and Technology, Norway
– sequence: 3
  givenname: Karen Byskov
  surname: Lindberg
  fullname: Lindberg, Karen Byskov
  organization: Department of Electric Power Engineering, Norwegian University of Science and Technology, Norway
– sequence: 4
  givenname: Hossein
  surname: Farahmand
  fullname: Farahmand, Hossein
  organization: Department of Electric Power Engineering, Norwegian University of Science and Technology, Norway
BookMark eNqFkEtLxDAUhYMoOI7-BcnSTWtukr7AhYP4AsGNrkOa3s5kaJuaZBT99XYcRXDjKnD5zuHkOyL7gxuQkFNgKTDIz9epHnFAv3xPOeOQAhQSsj0yg7LgSQVQ7pMZEyxPeA7VITkKYc3YRHI2I2pBQ3RmpUO0hroRvY7WDbqjY6eHwQ5L2rsGO9o6TzX9QO8o9jaECaL1xnbNFnmzcfV7Nq6fBoWvomNy0Oou4Mn3OyfPN9dPV3fJw-Pt_dXiITGiEjEpTakloDS8arBBqEQrWglQt7KWktVFkzEmCy1FXWKWczAsL0zJGjBZBlUh5uRs1zt697LBENW0xmA3fQLdJiiei1xWpcj4hF7sUONdCB5bZWz8Ghu9tp0CprZe1Vr9eFVbr2rndYrnf-Kjt7327_8HL3dBnDy8WvQqGIuDwcZ6NFE1zv5X8Qke8ZoX
CitedBy_id crossref_primary_10_1016_j_energy_2023_128902
crossref_primary_10_1016_j_ijhydene_2024_07_397
crossref_primary_10_1016_j_samod_2023_100026
crossref_primary_10_1016_j_segan_2022_100954
crossref_primary_10_3390_en17112769
crossref_primary_10_1016_j_apenergy_2022_120022
Cites_doi 10.1016/j.renene.2020.04.144
10.1016/j.ijepes.2017.09.007
10.1016/j.enbuild.2016.06.061
10.1049/iet-rpg.2017.0407
10.1016/j.enbuild.2011.02.005
10.1016/j.rser.2018.07.012
10.2478/rtuect-2014-0002
10.1016/j.enbuild.2010.12.022
10.1016/j.buildenv.2020.107418
10.1016/j.enbuild.2016.05.039
10.1016/j.ijepes.2020.106088
10.1016/B978-0-444-63492-4.00009-5
10.1016/j.jclepro.2016.02.087
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.117415
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_117415
S0306261921008114
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c393t-8c8a41e4c29dede193f3f411bf4b440b7d50047a43b8e5621c067c80d1c551973
IEDL.DBID AIKHN
ISSN 0306-2619
IngestDate Thu Sep 04 16:49:04 EDT 2025
Tue Jul 01 02:54:03 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Fri Feb 23 02:41:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stochastic dynamic programming
Operational planning
Hourly CO2eq-intensity
Grid interaction
Demand-side management
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-8c8a41e4c29dede193f3f411bf4b440b7d50047a43b8e5621c067c80d1c551973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2279-1256
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0306261921008114
PQID 2636498352
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636498352
crossref_citationtrail_10_1016_j_apenergy_2021_117415
crossref_primary_10_1016_j_apenergy_2021_117415
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_117415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sonderegger (b24) 1978
Norge (b12) 2018
Gudivada, Rao, Raghavan (b22) 2015
Renewables.ninja, URL
2021.
Bellman (b21) 1957
Marszal, Heiselberg, Bourrelle, Musall, Voss, Sartori, Napolitano (b5) 2011
Clauß, Stinner, Solli, Lindberg, Byskov, Madsen, Georges (b10) 2019
Jafari, Korpås, Botterud (b33) 2020; 156
Helseth, Fodstad, Askeland, Mo, Nilsen, Pérez-Díaz, Chazarra, Guisández (b13) 2017; 11
Fenner, Kibert, Woo, Morque, Razkenari, Hakim, Lu (b6) 2018; 94
Berge, Mathisen (b31) 2016; 127
Glover, Villa, Murley, Coelho, Adey-Johnson, Pinto-Bello (b42) 2021
Valentini, Raducu, Sera, Teodorescu (b26) 2008
URL
Pinel, Korpås, B. Lindberg (b8) 2021; 187
Bacher, Madsen (b25) 2011; 43
DIRECTIVE (EU) 2018/844 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance), Tech. rep., 2018.
Ringerikskraft -
SINTEF Energy Research KMB project 190780/S60, ElDeK, Electricity Demand Knowledge, URL
Graabak, Bakken, Feilberg (b9) 2014; 13
Liu, Sun, Lin, Zhao, Yang (b20) 2016; 124
2013.
Selamawit, Schlanbudch, Sørnes, Inman, Andresen (b4) 2016
sonnenBatterie -
Beale, Forrest (b23) 1976
CO2 European Emission Allowances PRICE Today — CO2 European Emission Allowances Spot Price Chart — Live Price of CO2 European Emission Allowances per Ounce — Markets Insider, URL
Mo, Fosso, Flatabø, Haugstad (b15) 2002
Emil Thorvaldsen, Bjarghov, Farahmand (b17) 2020
Lindberg, Doorman, Fischer, Korpås, Ånestad, Sartori (b7) 2016; 127
Finocchiaro L, Goia F, Grynning S, Gustavsen A. The ZEB Living Lab: a multi-purpose experimental facility, Tech. rep., 2014.
Thorvaldsen, Korpås, Farahmand (b18) 2021
Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, Tech. rep., 2010.
Sadeghianpourhamami, Refa, Strobbe, Develder (b35) 2018; 95
Nord Pool -
ZEB Living Lab -
ORGANISATIONAL AND REGIONAL TABLES OECD Total, Tech. rep., URL
.
Lien K, Byskov Lindberg K. A Norwegian Zero Emission Building Definition, Tech. rep., URL
Pinel (b16) 2020; 121
Botterud, Holen, Catrinu, Wolfgang (b19) 2005
Vogler-Finck, Clauß, Georges, Sartori, Wisniewski (b29) 2019
Fodstad, Henden, Helseth (b14) 2015
MERRA-2, URL
Tranberg, Corradi, Lajoie, Gibon, Staffell, Andresen (b11) 2019; 26
Lakshmanan V, Bjarghov S, Olivella-Rosell P, Lloret-Gallego P, Munné-Collado I, Korpås M. Value of flexibility according to the perspective of distribution system operators — a case study with a real-life example for a Norwegian scenario, 2021.
Lindberg (10.1016/j.apenergy.2021.117415_b7) 2016; 127
10.1016/j.apenergy.2021.117415_b38
10.1016/j.apenergy.2021.117415_b37
10.1016/j.apenergy.2021.117415_b36
Mo (10.1016/j.apenergy.2021.117415_b15) 2002
Liu (10.1016/j.apenergy.2021.117415_b20) 2016; 124
10.1016/j.apenergy.2021.117415_b39
Fodstad (10.1016/j.apenergy.2021.117415_b14) 2015
Clauß (10.1016/j.apenergy.2021.117415_b10) 2019
Vogler-Finck (10.1016/j.apenergy.2021.117415_b29) 2019
10.1016/j.apenergy.2021.117415_b41
10.1016/j.apenergy.2021.117415_b40
Valentini (10.1016/j.apenergy.2021.117415_b26) 2008
Pinel (10.1016/j.apenergy.2021.117415_b16) 2020; 121
Tranberg (10.1016/j.apenergy.2021.117415_b11) 2019; 26
Norge (10.1016/j.apenergy.2021.117415_b12) 2018
10.1016/j.apenergy.2021.117415_b27
Glover (10.1016/j.apenergy.2021.117415_b42) 2021
Bellman (10.1016/j.apenergy.2021.117415_b21) 1957
10.1016/j.apenergy.2021.117415_b1
Botterud (10.1016/j.apenergy.2021.117415_b19) 2005
Marszal (10.1016/j.apenergy.2021.117415_b5) 2011
10.1016/j.apenergy.2021.117415_b3
10.1016/j.apenergy.2021.117415_b2
Fenner (10.1016/j.apenergy.2021.117415_b6) 2018; 94
Pinel (10.1016/j.apenergy.2021.117415_b8) 2021; 187
10.1016/j.apenergy.2021.117415_b28
Helseth (10.1016/j.apenergy.2021.117415_b13) 2017; 11
Thorvaldsen (10.1016/j.apenergy.2021.117415_b18) 2021
Gudivada (10.1016/j.apenergy.2021.117415_b22) 2015
Selamawit (10.1016/j.apenergy.2021.117415_b4) 2016
Emil Thorvaldsen (10.1016/j.apenergy.2021.117415_b17) 2020
Sadeghianpourhamami (10.1016/j.apenergy.2021.117415_b35) 2018; 95
Sonderegger (10.1016/j.apenergy.2021.117415_b24) 1978
Graabak (10.1016/j.apenergy.2021.117415_b9) 2014; 13
10.1016/j.apenergy.2021.117415_b30
Berge (10.1016/j.apenergy.2021.117415_b31) 2016; 127
Beale (10.1016/j.apenergy.2021.117415_b23) 1976
10.1016/j.apenergy.2021.117415_b34
Jafari (10.1016/j.apenergy.2021.117415_b33) 2020; 156
Bacher (10.1016/j.apenergy.2021.117415_b25) 2011; 43
10.1016/j.apenergy.2021.117415_b32
References_xml – volume: 127
  start-page: 1057
  year: 2016
  end-page: 1073
  ident: b31
  article-title: Perceived and measured indoor climate conditions in high-performance residential buildings
  publication-title: Energy Build
– reference: Nord Pool -
– volume: 127
  start-page: 194
  year: 2016
  end-page: 205
  ident: b7
  article-title: Methodology for optimal energy system design of zero energy buildings using mixed-integer linear programming
  publication-title: Energy Build
– year: 2018
  ident: b12
  article-title: Norsk Standard NS 3720:2018
– year: 1957
  ident: b21
  article-title: A Markovian decision process -
– reference: ZEB Living Lab -
– year: 2019
  ident: b10
  article-title: General rights evaluation method for the hourly average CO2eq. intensity of the electricity mix and its application to the demand response of residential heating
– volume: 187
  year: 2021
  ident: b8
  article-title: Impact of the CO2 factor of electricity and the external CO2 compensation price on zero emission neighborhoods’ energy system design
  publication-title: Build Environ
– reference: DIRECTIVE (EU) 2018/844 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance), Tech. rep., 2018.
– start-page: 533
  year: 2019
  end-page: 543
  ident: b29
  publication-title: Inverse Model Identification of the Thermal Dynamics of a Norwegian Zero Emission House
– start-page: 52
  year: 1976
  end-page: 69
  ident: b23
  article-title: Global optimization using special ordered sets
– volume: 95
  start-page: 451
  year: 2018
  end-page: 462
  ident: b35
  article-title: Quantitive analysis of electric vehicle flexibility: A data-driven approach
  publication-title: Int J Electr Power Energy Syst
– volume: 94
  start-page: 1142
  year: 2018
  end-page: 1152
  ident: b6
  article-title: The carbon footprint of buildings: A review of methodologies and applications
  publication-title: Renew Sustain Energy Rev
– start-page: 1
  year: 2020
  end-page: 7
  ident: b17
  article-title: Representing long-term impact of residential building energy management using stochastic dynamic programming
  publication-title: 2020 international conference on probabilistic methods applied to power systems (PMAPS)
– year: 2002
  ident: b15
  article-title: Short-term and medium-term generation scheduling in the norwegian hydro system under a competitive power market
– year: 2021
  ident: b18
  article-title: Long-term value of flexibility from flexible assets in building operation
– volume: 13
  start-page: 12
  year: 2014
  end-page: 19
  ident: b9
  article-title: Zero emission building and conversion factors between electricity consumption and emissions of greenhouse gases in a long term perspective
  publication-title: Environ Clim Technol
– volume: 43
  start-page: 1511
  year: 2011
  end-page: 1522
  ident: b25
  article-title: Identifying suitable models for the heat dynamics of buildings
  publication-title: Energy Build
– reference: CO2 European Emission Allowances PRICE Today — CO2 European Emission Allowances Spot Price Chart — Live Price of CO2 European Emission Allowances per Ounce — Markets Insider, URL
– reference: , URL
– volume: 156
  start-page: 1171
  year: 2020
  end-page: 1185
  ident: b33
  article-title: Power system decarbonization: Impacts of energy storage duration and interannual renewables variability
  publication-title: Renew Energy
– reference: Lien K, Byskov Lindberg K. A Norwegian Zero Emission Building Definition, Tech. rep., URL
– reference: Ringerikskraft -
– start-page: 2017
  year: 2016
  end-page: 2024
  ident: b4
  article-title: A norwegian ZEB definition guideline, Vol. January
– volume: 121
  year: 2020
  ident: b16
  article-title: Clustering methods assessment for investment in zero emission neighborhoods’ energy system
  publication-title: Int J Electr Power Energy Syst
– year: 2005
  ident: b19
  article-title: Integrated energy distribution system planning: A multi-criteria approach optimal utilization of hydro power view project integrated energy distribution system planning: A multi-criteria approach
  publication-title: 15th power systems computation conference
– reference: Lakshmanan V, Bjarghov S, Olivella-Rosell P, Lloret-Gallego P, Munné-Collado I, Korpås M. Value of flexibility according to the perspective of distribution system operators — a case study with a real-life example for a Norwegian scenario, 2021.
– reference: ORGANISATIONAL AND REGIONAL TABLES OECD Total, Tech. rep., URL
– volume: 26
  year: 2019
  ident: b11
  article-title: Real-time carbon accounting method for the European electricity markets
  publication-title: Energy Strateg Rev
– reference: .
– year: 1978
  ident: b24
  article-title: Dynamic models of house heating based on equivalent thermal parameters
  publication-title: PhDT
– year: 2021
  ident: b42
  article-title: EU Market monitor for demand side flexibility
– reference: Renewables.ninja, URL
– reference: sonnenBatterie -
– reference: MERRA-2, URL
– reference: , 2013.
– reference: SINTEF Energy Research KMB project 190780/S60, ElDeK, Electricity Demand Knowledge, URL
– year: 2015
  ident: b14
  article-title: Hydropower scheduling in day-ahead and balancing markets
  publication-title: International conference on the european energy market, EEM, Vol. 2015-August
– reference: Finocchiaro L, Goia F, Grynning S, Gustavsen A. The ZEB Living Lab: a multi-purpose experimental facility, Tech. rep., 2014.
– year: 2011
  ident: b5
  article-title: Zero energy building - a review of definitions and calculation methodologies
  publication-title: Energy Build
– start-page: 203
  year: 2015
  end-page: 238
  ident: b22
  article-title: Big data driven natural language processing research and applications
  publication-title: Handbook of statistics, Vol. 33
– volume: 11
  start-page: 1640
  year: 2017
  end-page: 1647
  ident: b13
  article-title: Assessing hydropower operational profitability considering energy and reserve markets
  publication-title: IET Renew Power Gener
– volume: 124
  start-page: 266
  year: 2016
  end-page: 275
  ident: b20
  article-title: Multi-objective optimization of the operating conditions in a cutting process based on low carbon emission costs
  publication-title: J Cleaner Prod
– reference: , 2021.
– start-page: 433
  year: 2008
  end-page: 438
  ident: b26
  article-title: PV Inverter test setup for european efficiency, static and dynamic MPPT efficiency evaluation
  publication-title: 11th international conference on optimization of electrical and electronic equipment, OPTIM 2008
– reference: Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, Tech. rep., 2010.
– year: 2002
  ident: 10.1016/j.apenergy.2021.117415_b15
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.117415_b17
  article-title: Representing long-term impact of residential building energy management using stochastic dynamic programming
– volume: 156
  start-page: 1171
  year: 2020
  ident: 10.1016/j.apenergy.2021.117415_b33
  article-title: Power system decarbonization: Impacts of energy storage duration and interannual renewables variability
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.04.144
– ident: 10.1016/j.apenergy.2021.117415_b27
– volume: 95
  start-page: 451
  year: 2018
  ident: 10.1016/j.apenergy.2021.117415_b35
  article-title: Quantitive analysis of electric vehicle flexibility: A data-driven approach
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2017.09.007
– volume: 127
  start-page: 1057
  year: 2016
  ident: 10.1016/j.apenergy.2021.117415_b31
  article-title: Perceived and measured indoor climate conditions in high-performance residential buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.06.061
– year: 2018
  ident: 10.1016/j.apenergy.2021.117415_b12
– ident: 10.1016/j.apenergy.2021.117415_b2
– year: 2021
  ident: 10.1016/j.apenergy.2021.117415_b18
– ident: 10.1016/j.apenergy.2021.117415_b40
– start-page: 533
  year: 2019
  ident: 10.1016/j.apenergy.2021.117415_b29
– volume: 11
  start-page: 1640
  issue: 13
  year: 2017
  ident: 10.1016/j.apenergy.2021.117415_b13
  article-title: Assessing hydropower operational profitability considering energy and reserve markets
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2017.0407
– start-page: 2017
  year: 2016
  ident: 10.1016/j.apenergy.2021.117415_b4
– ident: 10.1016/j.apenergy.2021.117415_b37
– year: 2015
  ident: 10.1016/j.apenergy.2021.117415_b14
  article-title: Hydropower scheduling in day-ahead and balancing markets
– ident: 10.1016/j.apenergy.2021.117415_b39
– volume: 43
  start-page: 1511
  issue: 7
  year: 2011
  ident: 10.1016/j.apenergy.2021.117415_b25
  article-title: Identifying suitable models for the heat dynamics of buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.02.005
– ident: 10.1016/j.apenergy.2021.117415_b28
– ident: 10.1016/j.apenergy.2021.117415_b30
– volume: 94
  start-page: 1142
  year: 2018
  ident: 10.1016/j.apenergy.2021.117415_b6
  article-title: The carbon footprint of buildings: A review of methodologies and applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.07.012
– volume: 13
  start-page: 12
  issue: 1
  year: 2014
  ident: 10.1016/j.apenergy.2021.117415_b9
  article-title: Zero emission building and conversion factors between electricity consumption and emissions of greenhouse gases in a long term perspective
  publication-title: Environ Clim Technol
  doi: 10.2478/rtuect-2014-0002
– ident: 10.1016/j.apenergy.2021.117415_b32
– year: 2019
  ident: 10.1016/j.apenergy.2021.117415_b10
– start-page: 433
  year: 2008
  ident: 10.1016/j.apenergy.2021.117415_b26
  article-title: PV Inverter test setup for european efficiency, static and dynamic MPPT efficiency evaluation
– year: 2011
  ident: 10.1016/j.apenergy.2021.117415_b5
  article-title: Zero energy building - a review of definitions and calculation methodologies
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2010.12.022
– volume: 187
  year: 2021
  ident: 10.1016/j.apenergy.2021.117415_b8
  article-title: Impact of the CO2 factor of electricity and the external CO2 compensation price on zero emission neighborhoods’ energy system design
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2020.107418
– year: 2005
  ident: 10.1016/j.apenergy.2021.117415_b19
  article-title: Integrated energy distribution system planning: A multi-criteria approach optimal utilization of hydro power view project integrated energy distribution system planning: A multi-criteria approach
– year: 1957
  ident: 10.1016/j.apenergy.2021.117415_b21
– ident: 10.1016/j.apenergy.2021.117415_b3
– ident: 10.1016/j.apenergy.2021.117415_b1
– year: 1978
  ident: 10.1016/j.apenergy.2021.117415_b24
  article-title: Dynamic models of house heating based on equivalent thermal parameters
  publication-title: PhDT
– year: 2021
  ident: 10.1016/j.apenergy.2021.117415_b42
– volume: 26
  year: 2019
  ident: 10.1016/j.apenergy.2021.117415_b11
  article-title: Real-time carbon accounting method for the European electricity markets
  publication-title: Energy Strateg Rev
– ident: 10.1016/j.apenergy.2021.117415_b41
– volume: 127
  start-page: 194
  year: 2016
  ident: 10.1016/j.apenergy.2021.117415_b7
  article-title: Methodology for optimal energy system design of zero energy buildings using mixed-integer linear programming
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.05.039
– start-page: 52
  year: 1976
  ident: 10.1016/j.apenergy.2021.117415_b23
– volume: 121
  year: 2020
  ident: 10.1016/j.apenergy.2021.117415_b16
  article-title: Clustering methods assessment for investment in zero emission neighborhoods’ energy system
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106088
– ident: 10.1016/j.apenergy.2021.117415_b36
– ident: 10.1016/j.apenergy.2021.117415_b34
– ident: 10.1016/j.apenergy.2021.117415_b38
– start-page: 203
  year: 2015
  ident: 10.1016/j.apenergy.2021.117415_b22
  article-title: Big data driven natural language processing research and applications
  doi: 10.1016/B978-0-444-63492-4.00009-5
– volume: 124
  start-page: 266
  year: 2016
  ident: 10.1016/j.apenergy.2021.117415_b20
  article-title: Multi-objective optimization of the operating conditions in a cutting process based on low carbon emission costs
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2016.02.087
SSID ssj0002120
Score 2.381545
Snippet The primary objective of Zero Emission Buildings (ZEBs) is to achieve net zero emission over the buildings’ lifetime. To achieve this goal, accurate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117415
SubjectTerms case studies
cost effectiveness
Demand-side management
electricity costs
energy
Grid interaction
Hourly CO2eq-intensity
inventories
operating costs
Operational planning
Stochastic dynamic programming
zero emissions
Title A stochastic operational planning model for a zero emission building with emission compensation
URI https://dx.doi.org/10.1016/j.apenergy.2021.117415
https://www.proquest.com/docview/2636498352
Volume 302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50vehBdFVcX0TwWrd5ddvjIsqquBcVvIW8iorsln1cPPjbzXRTXwgePDZkQsmkM1-TfPMBnDBraelZkXDZQwkz7ROTGpakVnPjdK_IU-Q73wyzwb24epAPS3DWcGHwWmWM_YuYXkfr2NKNs9mtnp66t4h2a_yP9WkoilmvMF5ksgUr_cvrwfAjILNYnTH0T9DgC1H4-VRXvibZhV9FRvEIU6BC7u856ke0rlPQxQasR-xI-ovX24QlP2rD2peKgm3YOf8kroWu8cudboHqkwDz7KPGusxkXPlJ3AUkVZQtIrUoDgkglmjy6idjglJwuJlGTNTOJrhr-9mM19HDX3A90DbcX5zfnQ2SKK6QWF7wWZLbXAvqhWWF884HHFfyUlBqSmGESE3PSawkqQU3uQ8gidqQ12zwHLUSya58B1qj8cjvAmGZpz2Xy9Q6J1zKdJln3AQc6lzBXSk7IJvpVDZWHkcBjBfVXDF7Vo0bFLpBLdzQge6HXbWovfGnRdF4S31bRSokiD9tjxv3qjCPeG6iR348nyqW8UwUCFX3_jH-PqziE_IYqTyA1mwy94cB0MzMESyfvtGjuGzfAVaJ97I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADYhVlNRLXtPGW5YiqorJeoFJvlreIVqiN2nLhwLfjSR0KCKkHroltRR5n5tmeeQ-hS2oMKRzNIyZSkDBTLtKxplFsFNNWpXkWQ73zw2PS7fHbvuivoHZdCwNplcH3z3165a3Dk1aYzVY5GLSeAO1W-B_4aQiIWa9xwVLI62t-LPI8aOBm9K0jaP6tTHjYVKWrSuz8RpESuMDkoI_7d4T65aurAHS9jbYCcsRX84_bQStutIs2v_EJ7qKDzqJszTcN_-10D8kr7EGeeVHAyozHpZuEM0BcBtEiXEniYA9hscLvbjLGIAQHR2lYB-VsDGe2i8eQjO73wNVA-6h33Xlud6MgrRAZlrNZlJlMceK4obl11nkUV7CCE6ILrjmPdWoF8EgqznTmPEQixkc14-1GjIBSV3aAVkfjkTtEmCaOpDYTsbGW25iqIkuY9ijU2pzZQjSQqKdTmsA7DvIXr7JOMBvK2gwSzCDnZmig1le_cs68sbRHXltL_lhD0oeHpX0vavNKP49wa6JGbvw2lTRhCc8BqB79Y_xztN59friX9zePd8doA95ARSMRJ2h1Nnlzpx7azPRZtXQ_AXNx-H0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+operational+planning+model+for+a+zero+emission+building+with+emission+compensation&rft.jtitle=Applied+energy&rft.au=Thorvaldsen%2C+Kasper+Emil&rft.au=Korp%C3%A5s%2C+Magnus&rft.au=Lindberg%2C+Karen+Byskov&rft.au=Farahmand%2C+Hossein&rft.date=2021-11-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=302&rft_id=info:doi/10.1016%2Fj.apenergy.2021.117415&rft.externalDocID=S0306261921008114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon