A stochastic operational planning model for a zero emission building with emission compensation
The primary objective of Zero Emission Buildings (ZEBs) is to achieve net zero emission over the buildings’ lifetime. To achieve this goal, accurate cost-effective emission compensation is needed during the operational phase. This paper presents a stochastic planning model comprising an emission inv...
Saved in:
Published in | Applied energy Vol. 302; p. 117415 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-2619 1872-9118 |
DOI | 10.1016/j.apenergy.2021.117415 |
Cover
Summary: | The primary objective of Zero Emission Buildings (ZEBs) is to achieve net zero emission over the buildings’ lifetime. To achieve this goal, accurate cost-effective emission compensation is needed during the operational phase. This paper presents a stochastic planning model comprising an emission inventory for the operation of ZEBs. The operational planning methodology uses stochastic dynamic programming (SDP) to analyze and represent the expected future cost curve (EFCC) for operation based on the electricity price and accumulated CO2eq-inventory during the year. Failing to compensate for net zero emission makes the leftover amount subject to a penalty cost at the end of the year. This renders the overall problem multi-objective optimization including emission compensation and cost of operation. The model is applied to a case study of a Norwegian building, tested for a range of penalty costs for leftover CO2eq-inventory. The results show that, for a ZEB, including emission compensation demonstrates a significant impact on the operation of the building. The penalty cost puts a limit on how much the operational cost increase for additional compensation should be, influencing the end CO2eq-inventory. Increasing penalty costs decreases the end inventory, and a penalty cost of 10 EURkgCO2eq resulted in zero emission. The case achieving zero emission had an operational cost increase of 4.8% compared to operating without a penalty cost. This shows the importance of accounting for emissions during the operation of a ZEB, and the value of having an operational strategy that presents the future impact of operation.
•We look at CO2eq-emission inventory for operating a zero emission building.•We find the operational strategy for a building with emission compensation.•We investigate the impact of varying penalty cost for leftover emission.•We look at how finer resolution of CO2eq-intensity affects flexibility use.•We compare the operational strategy for a Norwegian and Danish case. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0306-2619 1872-9118 |
DOI: | 10.1016/j.apenergy.2021.117415 |