Vortex Anemometer Using MEMS Cantilever Sensor
This paper presents construction and performance of a novel hybrid microelectromechanical system (MEMS) vortex flowmeter. A miniature cantilever MEMS displacement sensor was used to detect frequency of vortices development. 3-mm-long silicon cantilever, protruding directly out of a trailing edge of...
Saved in:
Published in | Journal of microelectromechanical systems Vol. 19; no. 6; pp. 1485 - 1489 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.12.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents construction and performance of a novel hybrid microelectromechanical system (MEMS) vortex flowmeter. A miniature cantilever MEMS displacement sensor was used to detect frequency of vortices development. 3-mm-long silicon cantilever, protruding directly out of a trailing edge of a trapezoidal glass-epoxy composite bluff body was put into oscillatory motion by vortices shed alternately from side surfaces of the obstacle. Verified linear measurement range of the device extended from 5 to 22 m/s; however, it could be broadened in absence of external 50-Hz mains electrical interfering signal which required bandpass frequency-domain digital sensor signal processing. The MEMS vortex sensor proved its effectiveness in detection of semilaminar airflow velocity distribution in a 40-mm-diameter tubular pipe. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2010.2079916 |