A 1.4-V 10-bit 25-MS/s pipelined ADC using opamp-reset switching technique

A low-voltage opamp-reset switching technique (ORST) that does not use clock boosting, bootstrapping, switched-opamp (SO), or threshold voltage scaling is presented. This technique greatly reduces device reliability issues. Unlike the SO technique, the opamps stay active for all clock phases and, th...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 38; no. 8; pp. 1401 - 1404
Main Authors Chang, Dong-Young, Moon, Un-Ku
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A low-voltage opamp-reset switching technique (ORST) that does not use clock boosting, bootstrapping, switched-opamp (SO), or threshold voltage scaling is presented. This technique greatly reduces device reliability issues. Unlike the SO technique, the opamps stay active for all clock phases and, therefore, the ORST is suitable for high-speed applications. This new switching technique is applied to the design of a 10-bit 25-MS/s pipelined analog-to-digital converter (ADC). The prototype ADC was fabricated in a 0.35-/spl mu/m CMOS process and demonstrates 55-dB signal-to-noise ratio, 55-dB spurious-free dynamic range, and 48-dB signal-to-noise-plus-distortion ratio performance with a 1.4-V power supply. The total power consumption is 21 mW. The ADC's minimum operating power supply is 1.3 V (|V/sub TH,P/| = 0.9 V) and the maximum operating frequency is 32 MS/s. The ORST is fully compatible with future low-voltage submicron CMOS processes.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2003.814427