Video Denoising via Empirical Bayesian Estimation of Space-Time Patches

In this paper we present a new patch-based empirical Bayesian video denoising algorithm. The method builds a Bayesian model for each group of similar space-time patches. These patches are not motion-compensated, and therefore avoid the risk of inaccuracies caused by motion estimation errors. The hig...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical imaging and vision Vol. 60; no. 1; pp. 70 - 93
Main Authors Arias, Pablo, Morel, Jean-Michel
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2018
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper we present a new patch-based empirical Bayesian video denoising algorithm. The method builds a Bayesian model for each group of similar space-time patches. These patches are not motion-compensated, and therefore avoid the risk of inaccuracies caused by motion estimation errors. The high dimensionality of spatiotemporal patches together with a limited number of available samples poses challenges when estimating the statistics needed for an empirical Bayesian method. We therefore assume that groups of similar patches have a low intrinsic dimensionality, leading to a spiked covariance model . Based on theoretical results about the estimation of spiked covariance matrices, we propose estimators of the eigenvalues of the a priori covariance in high-dimensional spaces as simple corrections of the eigenvalues of the sample covariance matrix. We demonstrate empirically that these estimators lead to better empirical Wiener filters. A comparison on classic benchmark videos demonstrates improved visual quality and an increased PSNR with respect to state-of-the-art video denoising methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-9907
1573-7683
DOI:10.1007/s10851-017-0742-4