Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade

BRAF-targeted therapy results in objective responses in the majority of patients; however, the responses are short lived (∼6 months). In contrast, treatment with immune checkpoint inhibitors results in a lower response rate, but the responses tend to be more durable. BRAF inhibition results in a mor...

Full description

Saved in:
Bibliographic Details
Published inCancer immunology research Vol. 2; no. 7; p. 643
Main Authors Cooper, Zachary A, Juneja, Vikram R, Sage, Peter T, Frederick, Dennie T, Piris, Adriano, Mitra, Devarati, Lo, Jennifer A, Hodi, F Stephen, Freeman, Gordon J, Bosenberg, Marcus W, McMahon, Martin, Flaherty, Keith T, Fisher, David E, Sharpe, Arlene H, Wargo, Jennifer A
Format Journal Article
LanguageEnglish
Published United States 01.07.2014
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:BRAF-targeted therapy results in objective responses in the majority of patients; however, the responses are short lived (∼6 months). In contrast, treatment with immune checkpoint inhibitors results in a lower response rate, but the responses tend to be more durable. BRAF inhibition results in a more favorable tumor microenvironment in patients, with an increase in CD8(+) T-cell infiltrate and a decrease in immunosuppressive cytokines. There is also increased expression of the immunomodulatory molecule PDL1, which may contribute to the resistance. On the basis of these findings, we hypothesized that BRAF-targeted therapy may synergize with the PD1 pathway blockade to enhance antitumor immunity. To test this hypothesis, we developed a BRAF(V600E)/Pten(-/-) syngeneic tumor graft immunocompetent mouse model in which BRAF inhibition leads to a significant increase in the intratumoral CD8(+) T-cell density and cytokine production, similar to the effects of BRAF inhibition in patients. In this model, CD8(+) T cells were found to play a critical role in the therapeutic effect of BRAF inhibition. Administration of anti-PD1 or anti-PDL1 together with a BRAF inhibitor led to an enhanced response, significantly prolonging survival and slowing tumor growth, as well as significantly increasing the number and activity of tumor-infiltrating lymphocytes. These results demonstrate synergy between combined BRAF-targeted therapy and immune checkpoint blockade. Although clinical trials combining these two strategies are ongoing, important questions still remain unanswered. Further studies using this new melanoma mouse model may provide therapeutic insights, including optimal timing and sequence of therapy.
ISSN:2326-6074
DOI:10.1158/2326-6066.CIR-13-0215