Synchrotron X-ray diffraction study of load partitioning during elastic deformation of bovine dentin
The elastic properties of dentin, a biological composite consisting of stiff hydroxyapatite (HAP) nano-platelets within a compliant collagen matrix, are determined by the volume fraction of these two phases and the load transfer between them. We have measured the elastic strains in situ within the H...
Saved in:
Published in | Acta biomaterialia Vol. 6; no. 6; pp. 2172 - 2180 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The elastic properties of dentin, a biological composite consisting of stiff hydroxyapatite (HAP) nano-platelets within a compliant collagen matrix, are determined by the volume fraction of these two phases and the load transfer between them. We have measured the elastic strains in situ within the HAP phase of bovine dentine by high energy X-ray diffraction for a series of static compressive stresses at ambient temperature. The apparent HAP elastic modulus (ratio of applied stress to elastic HAP strain) was found to be 18
±
2
GPa. This value is significantly lower than the value of 44
GPa predicted by the lower bound load transfer Voigt model, using HAP and collagen volume fractions determined by thermo-gravimetric analysis. This discrepancy is explained by (i) a reduction in the intrinsic Young’s modulus of the nano-size HAP platelets due to the high fraction of interfacial volume and (ii) an increase in local stresses due to stress concentration around the dentin tubules. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2009.11.017 |