Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data

We propose a customized convolutional neural network based autoencoder called a hierarchical autoencoder, which allows us to extract nonlinear autoencoder modes of flow fields while preserving the contribution order of the latent vectors. As preliminary tests, the proposed method is first applied to...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 32; no. 9
Main Authors Fukami, Kai, Nakamura, Taichi, Fukagata, Koji
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a customized convolutional neural network based autoencoder called a hierarchical autoencoder, which allows us to extract nonlinear autoencoder modes of flow fields while preserving the contribution order of the latent vectors. As preliminary tests, the proposed method is first applied to a cylinder wake at ReD = 100 and its transient process. It is found that the proposed method can extract the features of these laminar flow fields as the latent vectors while keeping the order of their energy content. The present hierarchical autoencoder is further assessed with a two-dimensional y–z cross-sectional velocity field of turbulent channel flow at Reτ = 180 in order to examine its applicability to turbulent flows. It is demonstrated that the turbulent flow field can be efficiently mapped into the latent space by utilizing the hierarchical model with a concept of an ordered autoencoder mode family. The present results suggest that the proposed concept can be extended to meet various demands in fluid dynamics including reduced order modeling and its combination with linear theory-based methods by using its ability to arrange the order of the extracted nonlinear modes.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0020721