Dysregulation of Kupffer Cells/Macrophages and Natural Killer T Cells in Steatohepatitis in LXRα Knockout Male Mice

Liver X receptor (LXR) α expression is mainly localized to metabolic tissues, such as the liver, whereas LXRβ is ubiquitously expressed. LXRα is activated by oxysterols and plays an important role in the regulation of lipid metabolism in metabolic tissues. In macrophages, LXRs stimulate reverse chol...

Full description

Saved in:
Bibliographic Details
Published inEndocrinology (Philadelphia) Vol. 159; no. 3; pp. 1419 - 1432
Main Authors Endo-Umeda, Kaori, Nakashima, Hiroyuki, Umeda, Naoki, Seki, Shuhji, Makishima, Makoto
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Liver X receptor (LXR) α expression is mainly localized to metabolic tissues, such as the liver, whereas LXRβ is ubiquitously expressed. LXRα is activated by oxysterols and plays an important role in the regulation of lipid metabolism in metabolic tissues. In macrophages, LXRs stimulate reverse cholesterol transport and regulate immune responses. Although a high-cholesterol diet induces severe steatohepatitis in LXRα-knockout (KO) mice, the underlying mechanisms linking lipid metabolism and immune responses remain largely unknown. In this study, we investigated the role of LXRα in the pathogenesis of steatohepatitis by assessing the effects of a high-fat and high-cholesterol diet (HFCD) on hepatic immune cell proportion and function as well as lipid metabolism in wild-type (WT) and LXRα-KO mice. HFCD feeding induced severe steatohepatitis in LXRα-KO mice compared with WT mice. These mice had higher cholesterol levels in the plasma and the liver and dysregulated expression of LXR target and proinflammatory genes in both whole liver samples and isolated hepatic mononuclear cells. Flow cytometry showed an increase in CD68+CD11b+ Kupffer cells/macrophages and a decrease in invariant natural killer T cells in the liver of HFCD-fed LXRα-KO mice. These mice were more susceptible to lipopolysaccharide-induced liver injury and resistant to inflammatory responses against α-galactosylceramide or concanavalin-A treatment. The findings provide evidence for activation of bone marrow-derived Kupffer cells/macrophages and dysfunction of invariant natural killer T cells in LXRα-KO mouse liver. These findings indicate that LXRα regulates hepatic immune function along with lipid metabolism and protects against the pathogenesis of nonalcoholic steatohepatitis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1945-7170
0013-7227
1945-7170
DOI:10.1210/en.2017-03141